收藏 分享(赏)

一种新的不连续PWM统一化实现方法.pdf

上传人:精品资料 文档编号:10397793 上传时间:2019-11-07 格式:PDF 页数:9 大小:816.15KB
下载 相关 举报
一种新的不连续PWM统一化实现方法.pdf_第1页
第1页 / 共9页
一种新的不连续PWM统一化实现方法.pdf_第2页
第2页 / 共9页
一种新的不连续PWM统一化实现方法.pdf_第3页
第3页 / 共9页
一种新的不连续PWM统一化实现方法.pdf_第4页
第4页 / 共9页
一种新的不连续PWM统一化实现方法.pdf_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、 32 24 S Vol.32 No.24 Aug. 25, 2012 2012 M 8 25 Proceedings of the CSEE 2012 Chin.Soc.for Elec.Eng. 59 cI| 0258-8013 (2012) 24-0059-08 ms | TM 85 DS A Ss | 47040 B PWMdB LCZE _ 5 ( v1 8 g 710048) A New Generalized Implementation Method of Discontinuous PWM AN Shaoliang, SUN Xiangdong, CHEN Yingjuan,

2、 ZHONG Yanru, REN Biying (School of Automation and Information Engineering, Xian University of Technology, Xian710048, Shaanxi Province, China) ABSTRACT: In this paper, a generalized method to implement discontinuous pulsewidth modulation (DPWMx) strategies such as DPWMMAX, DPWMMIN, DPWM0, DPWM1, DP

3、WM2 and DPWM3 was proposed for three-phase voltage source inverters. Six sectors were redivided into twelve ones. Analyzing and summing up all kinds of conventional DPWMx strategies,it was true that the reference voltage of each -type DPWMx strategy could be obtained by corresponding-type DPWMx stra

4、tegy with linearity transformation. Essential relations between-type and -type DPWMx strategies were discussed, which provided a new viewpoint to analyze DPWM strategies. The feasibility of the new generalized DPWMx strategies using linearity transformation and volt-second balance is proved by theor

5、etical analysis. The effectiveness and correctness are verified by simulation and experimental results. KEY WORDS: discontinuous pulse width modulation (DPWM); local over-modulation; linearity transformation; inverter K1 M IM 4B LCDPWMMAX DPWMMIN DPWM0 DPWM1 DPWM2DPWM3(d DPWMx) dBZEb| 6 u O ms 12 u.

6、d DPWMx IsB , 9 DPWMx I DPWMx ILM1“i) DPWMx “ V7 s LC4B b sdBLME LCDPWMx V _ LT ZEr b 1oM z V LM IM “ np V S S “(20116118110006)b Project Supported by Special Scientific and Research Funds for Doctoral Speciality of Institution of Higher Learning (20116118110006)b 0 “ ?F 0 Mr q4 b z(continuous pulse

7、 width modulation CPWM) M1 z (discontinuous pulse width modulation DPWM) V LC 715Bo =B uWTV7YV 71 4Mr qyN DPWM .1-4a ro5-6a M 7-8a M IM9-12 5 EsWb D 13 H , O (000 111) d , O s LC a) 60 uW 71T DPWM1 D 14 P , O (000) d , O s P 71 120 uWT DPWMMIN D 154 3DPWM 1 e 60 71T uW - 30 DPWM0 2 e 60 71T uW 30 DP

8、WM2 3 , O s H P (111) 71 120 uWT DPWMMAX D 16LCB BD 71 q 60 30 uWT DPWM3 D 174 l (generalized discontinuous pulse width modulation GDPWM) sY LC DPWM0 DPWM1 DPWM2 D 18 4 B dq US“ =dB LC DPWM0aDPWM1aDPWM2aDPWM3aDPWMMAXaDPWMMIN 6 (d DPWMx)# bW O z (space vector pulse 60 S 32 width modulation SVPWM) D 1

9、9) DPWM H L o ? D 20 CPWM DPWM 71 1b DPWMx s4BLC DPWMx dBZEYV s Vi_ Lb 1 DPWMx I 1.1 III DPWMx I m 1 M IM Lload RloadsYE udc LBbm 2 DPWMx 3 Uimbm 3 US“/ bW O m V1(001)aV2(010)aV3(011)aV4(100)aV5(101)aV6(110) 6d , O V0(000)aV7(111) 2 , O bm 3(a) 6 u bW O m udc udc Lload RloadT S R ub ua uc S4 S2 S6 S

10、3 S1 S5 No m 1 M IM Fig. 1 Three-phase voltage source inverter S3S1S5uz ,s 9 uc ubua uc ub ua *m 2 DPWMx 3 Fig. 2 Pulse generating of DPWMx V7(111) I V5(101) V2(010) V III V0(000) V4(10II VI IV V3(011) V1(001) V6(110) (a) 6 u V7(111)1V5(101)V2(010) 10 6 V0(000) V4(14 127 V3(011) V1(001) V6(110)119 8

11、 5 3 2 (b) 12 u m 3 bW O m Fig. 3 Basic space-vector sectors m 3(b)s 12 u bW O mb DPWMx m 2 I*au a*bu a*cu dBVr T15 * * *a,b,c a,b,c zuuu (1) T*a,b,cu T (2) U M? *zu *a,b,cu 9 ,s T (3)i(5) Ub *am*bm*2cmcos( )cos( )cos( )uMu tuaMu tuaMu t (2) * *zmax min(1 ) (2 1)uku ku k (3) *max a b cmax , , uuu (4

12、) *min a b cmax , , uuu (5) T (2) a _ 0 aej2/3 um m 3 6d , O O um4udc/3 Ml bW I O uo um1 Muo/umKv Mmax=1.15b T (3) k DPWMx4“ I O m 3(a) U 60 uW H| k 0 1 W M V 6 DPWMx bm 4 DPWMx aM I*au :US 1V udc 111975312108642/rad0 2 110ua*1 1197 5 3 121086 4 2 /rad0 21 1 0 ua*(a) DPWMMAX (b) DPWMMIN 111975312108

13、642/rad0 2 110ua*1 1197 5 3 121086 4 2 /rad0 21 1 0 ua*(c) DPWM1 (d) DPWM3 111975312108642/rad0 2 110ua*1 1197 5 3 121086 4 2 /rad0 21 1 0 ua*(e) DPWM0 (f) DPWM2 m 4 M1.15 H III DPWMx I Fig. 4 Reference voltage of III-type DPWMx when M1.15 24 B PWMdB LCZE 61 1 V udcUS IM 0212 uWm 3(b) 12 ublm 4 I II

14、I DPWMx Ib 1.2 I II DPWMx I sm 4(a)i(f) DPWMx Io 71 I$ , udc udc u Tlt u u ub DPWMx I u ? 3V 71T In I u u = I T1“ V/ u? 3V Im 5 Ub m 4(a) DPWMMAX u 1a2 u 7a8 u 7a8 I T/ u 1a2 I m 5(a) Ub m 4(b)i(f)V uo / V Io m 5(b)i(f) Ublm 5 DPWMx Ib |m 5(a)DPWMMAXo_/ MPo udco Mm 6(a)obm 5(b) DPWMMIN| 1 11 9 7 5 3

15、 12108 6 4 2 /rad 0 2 1 1 0 ua*1 1197 5 3 12108 6 4 2 /rad 0 21 1 0 ua*(a) DPWMMAX (b) DPWMMIN 1 11 9 7 5 3 12108 6 4 2 /rad 0 2 1 1 0 ua*1 1197 5 3 12108 6 4 2 /rad 0 21 1 0 ua*(c) DPWM1 (d) DPWM3 1 11 9 7 5 3 12108 6 4 2 /rad 0 2 1 1 0 ua*1 1197 5 3 12108 6 4 2 /rad 0 21 1 0 ua*(e) DPWM0 (f) DPWM2

16、 m 5 M1.15 H II DPWMx I Fig. 5 Reference voltage of II-type DPWMx when M1.15 111975312108642/rad0 2 110ua*1 1197 5 3 121086 4 2 /rad0 21 1 0 ua*(a) DPWMMAX (b) DPWMMIN 111975312108642/rad0 2 110ua*1 1197 5 3 121086 4 2 /rad0 21 1 0 ua*(c) DPWM1 (d) DPWM3 111975312108642/rad0 2 110ua*1 1197 5 3 12108

17、6 4 2 /rad0 21 1 0 ua*(e) DPWM0 (f) DPWM2 m 6 M1.15 H I DPWMx I Fig. 6 Reference voltage of I-type DPWMx when M1.15 o_ M P udco Mm 6(b)obm 5(c)a(e)a(f) | uo_/ MP udc | uo_ M P udc m 6(c)a(e)a(f)ob m 5(d) DPWM3| 2a3a10a11 uo_/ M| 4a5a8a9 uo_ Mm 6(d)blm 6 I DPWMx IA I DPWMx Io 12 u = ? 3V 71T T ( b s

18、m 4 III DPWMx u Iof / Vm 5 DPWMx I ? DPWMx IV u L M Vm 6 U I DPWMx IbMQ I DPWMx I FQM| I DPWMx I u ML M) P 3 V V DPWMx I | DPWMx I u FV III DPWMx I62 S 32 bA B u M DPWMx #1b T (6)9 DPWMx(xMAX, MIN, 0, 1, 2, 3) / a M IdBLMVr Tb g(g9,10,3,4) DPWMx 1V 1 Ub i(i=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)LMy0

19、V 2a3 a DPWMx I i|Vb T (6) DPWMxdBVr T F T (7)V iV 3 | Vm 4 U III DPWMx Ib bM cM IVr T aM$ sY 2/3 4/3b 789910 101112*adc13cos( ) , 0,6623cos( ) , , 666233cos( ) , , 66343cos( ) , , 66453cos( ) , , 66653cos( ) , ,6653cos( ) , ,66MMMMMMuuM 2334456543cos( ) , , 666433cos( ) , , 66323cos( ) , , 6623cos(

20、 ) , , 6663cos( ) , ,066MMMMM *dc a dc*a*dc a dc, , uu uuuu u(7) V 1 DPWMxVr TM g| Tab. 1 Values of g in DPWMx expression g91034DPWMMAX /2 /2 /2 /2DPWMMIN /2 /2 /2 /2DPWM0 /2 /2 /2 /2DPWM1 /2 /2 /2 /2DPWM2 /2 /2 /2 /2DPWM3 /2 /2 /2 /2 s V B III DPWMx I $ V I DPWMx IVLMb 1.3 III I DPWMx I “ III DPWMx

21、 I I DPWMx I u M) 7) id T e Mb| I III DPWM1 IsYBm m 7 Ub Im 7 u 4a5a6a7a8a9 DPWM1 I III DPWM1 I u 6 7 $ , udc cl 9v IM z u 6 7 T HW T1 L1 : u 4a5a8a9Q_ M hl IM z u 4a5a8a9 T HW P III DPWM1 I I DPWM1 I M DPWM1 I M5Mbm 7 M=0.58 HM I DPWM1 I III DPWM1 I u 6a7 u 4a5a8a9 _MQZ_ M B P III I DPWM1 I V7 LCLb

22、 DPWMx 5 M5 DPWM1Mb /rad 0 2110ua*I DPWM1 III DPWM1 111 9 7 53m 7 M0.58 H I III DPWM1 I , Fig. 7 Reference voltages of I-type and III-type DPWM1 when M0.58 2 DPWMx ?s 2.1 oM o r Z21 2/322 23dc cab,h,rms 2 1 2 12/33321 21() ( )( )48( ) ( )duTIuuuLuu uu (8) T Tco LLW Pb (6) 24 B PWMdB LCZE 63 V 2 I DP

23、WMx IVr TM i | Tab. 2 Values of iin reference voltages of I-type DPWMx DPWMx 123456789101112xMAX 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2MxMIN 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2Mx0 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2Mx1 3/2M 3/2M 3/2M

24、3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2Mx2 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2M 3/2Mx3 3/2M 3/2M (33) /2M (3 3) / 2M 3/2M 3/2M 3/2M 3/2M (3 3) / 2M (33) /2M 3/2M 3/2MV 3 II DPWMx IVr TM i | Tab. 3 Values of i in reference voltages of II-type DPWMx DPWMx 123456789101112xMAX 1 1

25、1 1 13M/2 13M/2 13M/2 13M/2 1 1 1 1 xMIN 3M/21 3M/21 1 1 1 1 1 1 1 1 3M/213M/21x0 1 1 1 1 13M/2 13M/2 1 1 1 1 3M/213M/21x1 3M/21 1 1 1 1 13M/2 13M/2 1 1 1 1 3M/21x2 3M/21 3M/21 1 1 1 1 13M/2 13M/2 1 1 1 1 x3 1 3M/21 1 1 13M/2 1 1 13M/2 1 1 3M/211 oM q (harmonic distortion factor HDF)21 Mf 71 qa L#1

26、Vr T /322 3321 212/33321211( ) ( )( )( )dHDF u u u uuuuu (9) T (8) T (9) u1 a M BD I u2 b M BD Ib| III DPWMx I T (9) V9 B HDF V T (10) T 234234HDF a M a M a M (10) T a2aa3 a4 1“ |V 4 Ub m 8(a)M 71 q/ HDF CPWMM1 DPWMx 3 voM M0.6 DPWMxo V 4 PWM “ Tab. 4 Coefficients a2, a3and a4of PWM strategies a2a3a

27、4CPWM SPWM 1.500 0 2.205 3 1.125 0 SVPWM 1.500 0 2.205 3 0.989 7 DPWMx DPWMMAX 6.000 0 9.648 3 4.072 8 DPWMMIN 6.000 0 9.648 3 4.072 8 DPWM0 6.000 0 9.648 3 4.072 8 DPWM2 6.000 0 9.648 3 4.072 8 DPWM1 6.000 0 9.367 3 3.840 2 DPWM3 6.000 0 9.929 2 4.305 4 0.70.50.30.10.0 0.4 0.8 1.2M (a) M 71 q HDF D

28、PWMMAX, DPWMMIN,DPWM0, DPWM2 DPWM1DPWM3 SPWM SVPWM 0.70.50.30.10.0 0.4 0.8 1.2M (b) 71 qbv 3/2HDF DPWMMAX, DPWMMIN,DPWM0, DPWM2DPWM1 DPWM3SPWM SVPWM m 8 oM q (HDF) Fig. 8 HDF of different modulation strategies M1 A DPWM1oMKv DPWM3oMKl DPWMMAXaDPWMMINaDPWM0 DPWM2oMM DPWM1 DPWM3Wb DPWM H IM M BD 715 2

29、/3 o =T 71 M HDPWM 71 q V4 3/2 N H HDF m 8(b) U M HDPWMx oMl CPWM Ov DPWMx oMl8C DPWMx64 S 32 /o ?b 2.2 71 L/ IM 7L ! q 71 qK O 7Y1V LM5N H 71 L= H 119bBo =DPWMx 71 Ps/ T % 2sem01()d2PUI f (11) T Uer Im qy b *adc*adc0, ()cos( ) , uufuu(12) T (11) ( a5 71 Pref ref e m2P UI(13) 71 f (switching loss function SLF) sref/SLF P P (14) | T (11) (13) T (14) 201()d4SLF f (15) T (6)a(7)aV 13 % III DPWMx I T (15) qy /| DPWMx 71 f (SLF) m 9 UbVm V ABEBE (1515) DPWM1 71 Kl 7515 DPWM2 71 Kl 1575

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报