收藏 分享(赏)

塑性理论练习题.doc

上传人:精品资料 文档编号:10313505 上传时间:2019-10-29 格式:DOC 页数:20 大小:1.12MB
下载 相关 举报
塑性理论练习题.doc_第1页
第1页 / 共20页
塑性理论练习题.doc_第2页
第2页 / 共20页
塑性理论练习题.doc_第3页
第3页 / 共20页
塑性理论练习题.doc_第4页
第4页 / 共20页
塑性理论练习题.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、课件作业:1、应力分析:已知某点应力状态的应力分量为: ,其余为零,求: (1) 、该点的应力张量、应力偏张量、应力球张量; (2) 、求其主应力和主应力的方向(用两种方法) ; (3) 、求其主切(剪)面上的正应力、切(剪) 应力; (4) 、求其八面体上的正应力、切(剪) 应力; (5) 、求其等效应力; (6) 、画出该点的应力莫尔圆,并标出主切(剪平) 面和八面体平面的的位置。 解:(1) 3/70-0/532/703/70435ij(2) 、解法一:状态的特征方程 中的应力不变量为:3213JJ0)(2125)(70)22321 xyzxyzxzyxzyxzyxJ 得力状态的特征方程

2、:解得: 1570230,25431,求三个主应力分量的作用方向:先求主应力 的微分面的方向:4110310.5322nmlnll解此方程得可得 的微分面的方向, 同理,可分 别 求得 所作用的微分平面的方向:451 3和02311nml021nml1022nl解法二:得分 阅卷人xx30,4,53yy(3) 、主切面上的正应力、切应力: 102/,352/11212 )()( .,5./3323 )()( /3111 )()(4) 、因为有: 321ll .2/3218 )( m4089.13132218 )()()( (5)、等效应力: 512.3/ 2321 )()()(6) 、 573

3、.0578.0.4COS 0, 0,30x2 ,23,161020254 3213 221 nmly nlarctgyx xyyxyx ,平 面 :轴 垂 直 于 度 方 向 :轴 顺 时 针轴 在 度 方 向 :轴 逆 时 针轴 在 2、应变分析:已知某受应力作用点的三个应变分量为: ,试求 线元16430321 , 60cosnm。 r,解:51.27.0625.63 563.20*4*7.-.1-.21223 rrrTnml1:什么是金属的塑性?什么是塑性成形?与金属切削相比,塑性成形有何特点?答:塑性:在外力作用下使材料发生塑性变形而不破坏其完整性的能力称为塑性。是指材料的永久变形能力

4、。金属塑性成形:使金属材料在一定的外力作用下,利用其塑性而使其成形并获得一定力学性能的加工方法,称为金属塑性成形(塑性加工或压力加工),是金属加工的方法之一 。与金属切削相比,塑性成形的特点: 组织、性能得到改善和提高 金属材料经过相应的塑性加工后,其组织、性能得到改善和提高,特别是对于铸造组织的改善,效果更为显著; 材料利用率高 金属塑性成形主要是靠金属在塑性状态下的体积转移来实现,不产生切屑,因而材料利用率高,可以节约大量的金属材料; 生产效率高 金属塑性成形方法具有很高的生产率,适于大量生产。 如高速冲,400-1000 次/每分钟 ; 尺寸精度高 用塑性成形方法得到的工件可以达到较高的

5、精度 。2:塑性成形的分类以加工行业来分; 以受力方式来分:锻造、轧制、挤压、拉拔、冲压、弯曲、剪切; 以金属性成形方法来分; 以成形时工件的温度来分。P.82 思考题及习题2-1 叙述下列术语的定义及含义。1、理想弹塑性材料:. 在塑性变形时,需要考虑塑性变形之前的弹性变形,而不考虑硬化的材料,也即材料进入塑性状态后,应力不再增加可连续产生塑性变形。2、理想刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。3、弹塑性硬化材料:在塑性变形时,既要考虑塑性变形之前的弹性变形,又要考虑加工硬化的材料,这种材料在进入塑性状态后,如应力保持不变,则不能进一步变形。只有

6、在应力不断增加,也即在加载条件下才能连续产生塑性变形。4、 刚塑性硬化材料:在研究塑性变形时,不考虑塑性变形之前的弹性变形,但需要考虑变形过程中的加工硬化材料。5、屈服准则:在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为 : f(ij) C 又称为屈服函数,式中 C 是与材料性质有关而与应力状态无关的常数,可通过试验求得。6、屈服表面:以应力主轴为坐标轴可以构成一个主应力空间,屈服准则的

7、数学表达式在主应力空间中的几何图形是一个封闭的空间曲面。7、屈服轨迹:两向应力状态下屈服准则的表达式在主应力坐标平面上的几何图形是一个封闭的曲线。8、 平面:在主应力空间中,通过坐标原点并垂直于等倾线 ON 的平面称为 平面9、应力修正系数:即中间主应力影响系数,用 表示: 。10、硬化材料:塑性变形时,材料发生加工硬化,屈服准则发生变化(变形过程每一刻都在变化)。11、流动应力:流动应力是从英文 Flow Stress 翻译过来的,实质上就是变形过程的应力。在定义流动应力的过程中,多少也借用了一些液态成形金属流动的概念,所以称为流动应力。流动应力(又称真实应力) 数值上等于试样瞬间横断面上的

8、实际应力,它是金属塑性加工变形抗力的指标。12、实际应力:t rue stress。 拉 伸 ( 或 压 缩 ) 试 验 时 , 变 形 力 与 当 时 实 际 截 面 积 ( 而 不 是 初 始 截 面 积 ) 之 比 。 其数 值 是 随 变 形 量 、 温 度 与 应 变 速 率 而 变 化 的 。13、14、条件应力条件应变:也称标称应力和名义应力,即假设试件截面的面积 A0 为常数下得到的应力应变。15、对数(真 实 )应变:真 实 应 变 e 应 该 是 瞬 时 伸 长 量 除 以 瞬 时 长 度 de=dL/L, 总 变 形 程 度 : lnL/L0.16、实际应变:真 实 应

9、变 e 应 该 是 瞬 时 伸 长 量 除 以 瞬 时 长 度 de=dL/L。17、 颈 缩 : 在 拉 伸 应 力 下 , 材 料 可 能 发 生 的 局 部 截 面 缩 减 的 现 象 。 2=3+18、形状硬化:由于缩颈,细颈处的横截面上已不再是均匀的单向拉应力,而处于不均匀的三向拉伸状态,在试件缩颈的自由表面上 ,而在试件内部 ,并且越接近中心 越大,即形状变化而产生应力升高现象称为形状硬化。zmzmz19、初始屈服轨迹:强化材料的屈服条件和强化面应力在数值上应该相等。推广到复杂应力状态情况,认为强化面在应力空间中的中心位置和形状都不变,随着强化程度的增加,强化面作形状相似的扩大。反

10、映在 平面上的后继屈服轨迹是一系列以原点为中心的相似对称封闭曲线,这一系列的曲线互不相交。例如,材料初始屈服时,若服从屈雷斯加屈服条件,则在 平面上的后继屈服轨迹是一系列同中心的正六边形,而服从密席斯屈服条件时,则对应一系列的同心圆,20、后继屈服轨迹:硬化后,屈服准则发生变化(变形过程每一刻都在变化)其轨迹或表面称为后继屈服表面或后续屈服轨迹。21、增量理论:由于材料在进入塑性状态时的非线性性质和塑性变形的不可恢复的特点,因此须研究应力增量和应变增量之间的关系。22、全量理论:塑性力学中用全量应力和全量应变表述弹塑性材本构关系的理论。23、比例加载:应力分量比例增加,各应力分量按同一比例增加

11、,中途不能卸载。 24)单向拉伸时的塑性失稳:单向拉伸时,出现缩颈后,外载下降,塑性变形还继续进行,显然,极限强度(抗拉强度) 。所对应的点就是塑性失稳点。现通过单向拉伸时的真实应力一应变曲线来研究塑性失稳时的特点。2-2 下列各种提法,相互之间完全等同的,还是有区别的?各用于何种情况下?试举例说明。 理想弹塑性 刚塑性 忽略体积变化 忽略弹性变形=0.5答:=;=理想弹塑性用于普郎特-路易斯 (Prandel-Reuss)增量理论方程。刚塑性, 用于列维-密席斯( Levy-Mises)增量理论方程。0.52-4 已知平面应变、单向应力时,中间应力影响系数都为常数,它们分别是 、 ,试分析平

12、面应力时 =1.5是否为常数?答:平面应力时 不为常数。12s1s2s12s1s2sBDHJACEGI KFLP2 12 s322s1s231 0A B C D EFGHIJK I1C1 NL-5 试证明密席斯屈服准则可用主应力偏量表达为: 2213s+=3( )证明一:用几何的方法:若变形体内一点的主应力为,则此点的应力状态可用主应力坐标空间的一点来表示: 123(,)P13lmn引等倾线ON 2222 213123222123312213()()()()3PNON表示应力球张量,NP表示应力偏张量证明二: 1231231123213221233123322132133122213s+-=

13、-= +-= -= -+ 3 =2mm 原 式 左 边 ( ) ( )()( )22 212132133132 211213132 21212332 23131323-+- (-)+(-)(-)+(-)9-)-)(-)(-) = +-)+-)-)-)92 ) ( ) ( ( ( ( ( ) 2221233112132123212331323132121322212331(-)+(-)-)+9(-)(-)-)(-)= -)(-)+-)-)9-)-)(-)(-)(-)+(-)-)=9 32 ( ( ( ( (22212331s() 原式得证。2-6 一直径为 50mm 的圆柱形试样,在无摩擦的光滑

14、平板间镦粗,当总压力达到 628kN 时,试样屈服,现设在圆柱体圆周方向上加 10MPa 的压力,试求试样屈服时所需的总压力。解:无摩擦的光滑平板间镦粗,试样屈服,即 ;(两屈服准则重和)13-=s由于:12z3 3)2=068k- 03.4*(510rPNMPaAm则: 13=-20s Ma圆柱体圆周方向上加 10MPa 的压力,试样屈服,即 :13-=s12z3s=-0=-32-0r PaPa2-7 有一薄壁管,平均直径为 ,壁厚为 ,承受内压 ,材料的屈服应力为 ,现管壁上的径向80m4p30MPa应力 ,试用两个屈服准则分别求出下列情况下管子屈服时的 :(1)管子两端自由;(2) 管子

15、两端封闭;(3)0r管子两端加 62.8kN 的压力。解:(1) 由于:,0,zrprt将 带入密席斯屈服,得:123、 、2221313()()()s得: 0stpMPar将 带入屈雷斯加屈服准则,得:13、13s( )得: 0stpMPar(2) 由于:123, , 0zrrtt将 带入密席斯屈服准则,得:123、 、s22312321 )()()(得: 4.5stpMPar将 带入屈雷斯加屈服准则,得:13、13s得: 0stpMPar(3) 由于:1, 62.5arzptt23 =62.50; ; 0z zrprt当 :将 带入密席斯屈服准则,得:123、 、s21231232)()(

16、)(得: 4.5stpMPar将 带入屈雷斯加屈服准则,得:13、13s得: 0stpMPar23 =62.5a,若接触面上摩擦条件符合库伦定律,试用主应力法推导单位流动应力 p 的表达式。解:(1) 、切取基元体。切取包括接触面在内的高度为坯料瞬时高度 h、宽度为 dx 的基元体 z +(2)沿 x 抽方向的平衡微分方程: 02ldxhhlxx 化简后得: 02hdx确定摩擦条件: 采用摩擦系数条件: z(4) 、确定 的关系: zx、采用近似的屈服准则,得:(或: )zxsdzxsd32(5)代入平衡微分方程得: hzz2积分上式得 :,Cxzlnhxzce2(6) 、由边界条件定 C:由

17、边界条件知 , (或: )代入可得边界常数 021bx23bxzsz sz32(或: ) hbseChse3(7) 、将(3) , (4) , (5)带入平衡微分方程,即得:(或: )hxbsze2hxbsze234-11 镦粗一圆柱体,侧面作用有均布压应力 ,如图 4-22 所示。设摩擦切应力满足常摩擦条件,试用主应力0法推导单位流动应力 p。解:1、 切取基元体(1 分)2、列平衡方程(沿 向)整理并略去高次项得 02sin2 dhdhdhdd(1)023、找 与 的关系可以从 与 的关系再利用应力应变关系式判别出。对于实心圆柱体镦粗,径向应变 ,而切向应变d是 两者相等,根据应力应变关系

18、理论必然有 (2)d2 将(2)带入(1)可得 (3)h24、带入边界摩擦条件边界上 带入(3)式可得s(4)dhds25、引入塑性屈服条件因 ,此时 Mises 屈服准则和 Tresca 准则是一致的。由应变状态可见, ,根据应力 0,z应变顺序对应规律(考虑到符号)可知 ,此时的屈服准则 略去摩擦力,即z sminax视 为主应力,将有z,即 (6)szsz则 (7)dz6、联立求解将(7)带入(4)得 + z z(8)dhdsz2积分上式,相应得(10)Csz7、计算(10)式的定积分常数当 时2d带入屈服准则(6)式 ,再带入(10)式得0-0+zs(12)ssCdh8、求接触面上压力

19、分布公式 (12)带入(10)得(13)02+zs sh例:如附图所示的滑移线场, 线为直线, 线为同心圆弧线。已知 pc=-90MPa, k=60MPa,试求:1)C 点的 、 和 值; 2)E 点的 、 和 值;由于:解:1)C 点:所以:2)E 点: 由于 B 点: xyxxyx-90=6 4sin2-906sin(2*)-30i-i()-154cos260cos(2*)0cmcxcymcxyKMPak MPak5-11 图 5-37 所示的楔体,两面受压力 p,已知 ,试用滑移线法求极限载荷。32=4解:(1) 、建场,如图:(2) 、定 族按照滑移线判断规则,C 点(或 D 点) ,

20、都可以判断 CD 是族滑移线。(3) 、.求边界点处的 、在 C 点:屈服准则: ,所以 ,p3 k231pk2113()/Cmp34C在 D 点:屈服准则: ,所以 ,01k231k23-90 =6 ()42461222 -412=-90*=-152.86sin2-15.86sin(2).iBmBEBEmEEmxEymKMPakk MPak沿 线+*(-)*()906+.0i*-182.cos260cos(2*)51.96xy Pak MPa 13()/2Dmk()24D(4) 、代入 Henkey 应力定理因 CD 是族滑移线: 2 3-244CmDmkkp沿 线( ) ( )知: 1k(

21、 )5-12 图 5-38 所示的楔体,两侧压力为 p,顶部压力为 q,求档(1) p=q 及 (2) pq 时的求极限载荷。解:(1) 、建场,如图:(2) 、定 族按照滑移线判断规则,C 点(或 D 点) ,都可以判断 CD 是族滑移线。(3) 、.求边界点处的 、情况二:pq在 D 点: 屈服准则: ,所以 ,3-pk23132-kp13()/2-Dmk()24D在 C 点:屈服准则: ,所以 ,1qk313-kq()/2-Cm(4) 、代入 Henkey 应力定理因 CD 是族滑移线: 22 -44CmDmkkqp沿 线( ) ( )知: 21pk( )5-14 试求如图 5-40 双边切口的板条,试求此板条的极限载荷(试件厚度为 B) 。解:(1)建场,如图:(2) 、定族按照滑移线判断规则,无论从 A 点分析,还是从 B 点分析,都可以判断 AHB 是 族滑移线。(3) 、求边界点处的 、在 A 点: 屈服准则: ,所以 , f1 k231kf23ka2/)(34a在 B 点: 屈服准则: ,所以 , 0k31k1(顺时针旋转 /2 角度)kb/)(31 -b(4) 、代入亨盖应力定理(因 AHB 是 族滑移线,由亨盖定理 2ababk知: 2-4fk( ( ) )( p(5) 、计算拉力 FtaHkptaH)2()2(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报