1、1数学培优强化训练(六)1如下图 1 是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是 ( )A B C D 2 依次观察左边三个图形,并判断照此规律从左向右第四个图形是 ( )A. B. C. D.3如图所示是计算机程序计算,若输入 x1,则最后输出结果是 4如果 x 0,且| x|=4,则 x-1= 5已知=4821,则 的余角等于_6某商品标价 100 元,打 x 折后的售价为_元。7 (本题满分 16 分)画图并填空:(1)画出图中ABC 的高 AD(标注出点 D 的位置) ;(2)画出把ABC 沿射线 AD
2、 方向平移 1cm 后得到的A 1B1C1;(3)根据“图形平移”的性质,得 BB1=_cm,线段 AC 与线段 1CA的关系是:_。8 (本题满分 16 分) (1)一天,小红与小莉利用温差测量山峰的高度,小红在山顶测得温度是-1,小莉此时在山脚测得温度是 5。已知该地区高度每增加 100 米,气温大约降低 0.8,这个山峰大约是多少米?图 1输入 x ( -3) -4 输出A BC2(2) 如图,C 是线段 AB 的中点,D 是线段 BC 的中点,已知图中所有的线段之和为 39,求线段 BC 的长9 (本题满分 16 分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲乙两家商店出售两种同
3、样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价 30 元,乒乓球每盒定价 5 元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的 9 折优惠。该班需球拍 5 副,乒乓球若干盒(不少于 5 盒) 。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样? (2)当购买 15 盒30 盒乒乓球时,你去办这件事,你打算去哪家商店购买?为什么? 10(本题满分 16 分)早晨 8 点多钟,有两辆汽车先后离开甲地向乙地开去,这两辆汽车的速度相同。8点 32 分,第一辆汽车行驶的路程是第二辆汽车的 3 倍;到了 8 点 39 分,第一辆汽车行驶的路程是第二辆的 2 倍。那么,第一辆汽车是几点几分离开甲
4、地的?其实并不难!3数学培优强化训练(六) (答案)1如下图 1 是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是 ( B )A B C D 2 依次观察左边三个图形,并判断照此规律从左向右第四个图形是 ( D )A. B. C. D.3如图所示是计算机程序计算,若输入 x1,则最后输出结果是 -1 。 4如果 x 0,且| x|=4,则 x-1= -5 5已知=4821,则 的余角等于_41 396某商品标价 100 元,打 x 折后的售价为_元。10x7 (本题满分 10 分)画图并填空:(1)画出图中ABC 的
5、高 AD(标注出点 D 的位置) ;(2)画出把ABC 沿射线 AD 方向平移 1cm 后得到的A 1B1C1;(3)根据“图形平移”的性质,得 BB1=_cm,线段 AC 与线段 A1C1 的关系是:_。(1)3 分, (2)3 分(3)BB 1=1cm, (2 分)平行且相等(2 分少一种扣 1 分)8 (1)一天,小红与小莉利用温差测量山峰的高度,小红在山顶测得温度是-1,小莉此时在山脚测得温度是 5。已知该地区高度每增加 100 米,气温大约降低 0.8,这个山峰大约是多少米?(1)750 米(设 1 分,方程 3 分、解答 3 分)图 1输入 x ( -3) -4 输出A BC4(2
6、) 如图,C 是线段 AB 的中点,D 是线段 BC 的中点,已知图中所有的线段之和为 39,求线段 BC 的长(2)分步计分:BC=6(设 1 分,方程 4 分,解答 3 分)9 (本题满分 8 分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价 30 元,乒乓球每盒定价 5 元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的 9 折优惠。该班需球拍 5 副,乒乓球若干盒(不少于 5 盒) 。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样? (2)当购买 15 盒30 盒乒乓球时,你去办这件事,你打算去哪家商店购
7、买?为什么? 9、 (1)20;(2)买 30 盒时到乙商店花钱较少。10(本题满分 9 分)早晨 8 点多钟,有两辆汽车先后离开甲地向乙地开去,这两辆汽车的速度相同。8 点 32 分,第一辆汽车行驶的路程是第二辆汽车的 3 倍;到了 8 点 39 分,第一辆汽车行驶的路程是第二辆的 2 倍。那么,第一辆汽车是几点几分离开甲地的?10、设在 8 点 32 分时第二辆汽车已出发 x 分钟,则在 8 点 32 分第一辆汽车已出发 3x 分钟。(得 2 分)由题意得: 2(x+7)=3x+7 (得 5 分)解得 x=7,3x=21,32-21=11 分,答:第一辆汽车在 8 点 11 分出发的。 (得 2 分)