收藏 分享(赏)

偏振光在散射介质中的传播与成像_李伟.pdf

上传人:精品资料 文档编号:10285523 上传时间:2019-10-28 格式:PDF 页数:7 大小:588.34KB
下载 相关 举报
偏振光在散射介质中的传播与成像_李伟.pdf_第1页
第1页 / 共7页
偏振光在散射介质中的传播与成像_李伟.pdf_第2页
第2页 / 共7页
偏振光在散射介质中的传播与成像_李伟.pdf_第3页
第3页 / 共7页
偏振光在散射介质中的传播与成像_李伟.pdf_第4页
第4页 / 共7页
偏振光在散射介质中的传播与成像_李伟.pdf_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、 S S G : ? 2007 M 37 9 : 94100 http:/ l : 2007-05-20; s : 2007-08-28 SE1 S “ ( | : 60578003)SE$?Z9 (I| : 2006CB70570) “ * “ , E-mail: uS S vSCIENCE IN CHINA PRESS ; .l ? ; *( bv 3;_ L i , 518055; bv “0s0 , S L i , 100084) K1 ; .lV HWa bWaZ_aM SM? p , ;5 , ?Z 3D;/ 1il . V ; .lV? , Monte CarloZE , E

2、;0 .ld9? p , i_83F“ L , s 0a bW |_aF bWsy ;0.lY ; 1 ; a bW e/ ;0T , # . 1oM ; Monte Carlo E 3 S?Z 38ZE4 1 p , 38 3 V . ;ZE 38 + , B 3 S5 M1 . 3F + , ;0.lV bWaZ_aMa M , /m . yN , Y; 3F8Kvp , hl Y9B 3D;B1 . ; .lV +M , V e/ , Q ;0m D . , HWsO S HW 1, S bW 2, bW roS 3, ;M (optical coherence tomography,

3、e OCT)SM 4, . ;0 V +9 V , r ;0Y5,6. K , 3 Sa a* 5d , 1$ZE9F . ; , a S4 , “ + , ; .l Es1il . 3“ 4; V , ; .lVEs , y YM1 , YT . Monte Carlo E ; r9 : ; .l 95 B 7. Monte Carlo E V e , y 8“ , YV E B ;08“ a l. V , v ;0d9 . Monte CarloZE il a P 2a L + . V , VZLM 8a |_aF bWs ; V9F la;a| V8, 9 VM+ +aHHq , # l

4、; ! , W% ;0. d9 , # ;0m1 D . Monte Carlo E V9 L V4;S , l;0 (; )a.l HWa bWsa , 9 VBt , ;0 Q a.l 9. tS# M? p W% ;0 V , s1 3 , . Monte Carlo EZE ; . H bW + , U 8a s ;.l bW +Y , s e/ rT , i|s ET LT1 . 1 ; Monte Carlo E 1.1 Monte Carlo E E;0 .l , 169 ;0 Q VM . ; s ; 1 , 8 % (Mueller Matrix) , ;sMf V ;0 X

5、 _ (Stokes Vector)| f 9 10. 4 , 9 % $i% FL . V ;0 X _ S=MS, M % , S ; X _ . 9 ZE : v SZ_as , YV ;0USZ_ , i X _ V U;0 ; f 9 ;0 bWsV ;0 X _ ; 3 ;0.lZ_ , /BQ ; ;0.lv s “ , v1 , V9F la;a| y Y ; T;0 = , V ; ;0 l B ! , ;006 ; 3 6B;0 , : c .lV SM , ! ;09 8 . ;0.l H , : c + X _ , #V Q . YVv ;0 V E , V ;V bW

6、s + . 1.2 _8 L=“ a+Y 3F“ 4B1 , Monte Carlo E , 1 es “ E L“ , X 8“_8 . d ; , K_8 A , d / , 8 o . 6BF X8“_8 l oA . M l oHA8| q , Ml oa i , VM_8 + , E“ . FF;8 8%8“ S_8 , YVF , VM_8 l“ a;| . 96 S S G ? 37 L= 3F (Fs8“ , c 8 s V , %a%aL8a 3vs0vl VV+ E , E+ . Fs L o 0 A , VFFFs _8 , / L= 38“ . 6 , L 3F v 8

7、i o , % , L 8 ; FWiv 8 , 8 , V T 8) . “ - , Ka oK 8 , X 4 9 . ?Z 0;0 9 , ; Monte Carlo EB1 = . “ - , d o 8_8 , . K B / iia ZE , yK 8_8B m. E _8 . B Ll oA , I n L=3F 8 f 8 , _8c “ MasY 1.5 0.2 m L o . 6B_8c L o B |_K , 8 EF8 . 81 , 8 |_s ( V . F l E HW|vv9F , 5e n , 9 ( I n lY . 1.3 Monte Carlo E _ E

8、 V L , XBt 9 LT E , B ; H_ ; HWM11. v IDM LHq , ;sY ;L ; H , _ ; s HW1“ m 1. p Z9 T111 , dz . 6 1 _ ; % E LT12, 9 ? z . 2 ; .l bW +# 8 Y VK*; X : ; bWs s 0Y . lo H , vo H f . l H , ;0 -_s ; 9F , ;0v t -_s . V .l . ;o 532 nm, 0.2 1.5 m 0 , sYV f . / L 3“ , | “ M Fs_88 , y Fs 8“ . 3 _8sY Monte Carlo E

9、9 ;0 bWs . m 2A U;0Q bWsMf d9s . m Vn : 1.5 m 0V f ;0“ -_l , 7 0.2 mV 8 ; bWs z . 111 Fs8“ , Mf 1.5 m 0d . yN , I n ;0 bWs+ H , Fs8“ f 1T , BF;X R s . m 1 _ ; .l M 9 : ; .l 97 m 3(a)A UL ;0Q M . Vn ;0 +“ 81 . h rTV f . m 3(b)A U B Q N 1“ , V V 8 ;0 Y , Z vFs . +Yi : f 0FFs8“ , ; bWsF f 8“ , F 8“ . y

10、N , s 3F ;+ H , A I n sY . m 3 (a) Q M wL ; (b) h 0.5 Q 01“ 3 eZE ;0T ;0 .lVB1 “ ?ZZE , L , . e/ $ “Q ;0mY , 41sO q . Monte Carlo ZE VZL E;0.lE , .lVM , e/ rTT13. E V: c;0 a , X _ , Q , i VYV ! Hq , E“ ”T , 4 BHq;0 . : YVK : c;0 VLC ; K ; LC bW ; ; , V LC . H E e/ PrT . m 4 A x8i m , A U bW ro ( ) (

11、 ) Vvv4m1 . m 5 Be L , B K%;V , : c;0 bW sM . Fs 0m1 D . m 2 8 Mf 98 S S G ? 37 m 4 i LT m 5 a bW eZE Y Vm 6(a) V A , iV “ ;0 V ;0 , #v ;0 . vs ;0 Z_? 3M . T/ , ;0m1 Dhl , ;0 D4 , ; sM . ;0 D , hl ;0 bW z , 4msO q . m 6(b)A U;0 Q s , N V A Q ;0T . V 9 , GQF a bW H , BQ ;0 GQh 7.7, 175, 10 . yN , T H

12、 , m|14 4 ) . 4 _s 8 ;0.l i 38“ vs 8 L o8 . , 3FWi“8 9 : ; .l 99 m 6 Y (a) T/ s . lsY 90 3, “ 10 cm1; (b) i ;0 Q s , 1 bW , 2 , 3 + bW , LA U rT , 8 , , j *8 . t + o 0 , 8T | L 3F , i| q . 8 , ;C H , ;sC 14. “ 9F79F . L= , K8 9 *Xi15, K+ M , C8“;0 ET , iX UBt1 C14. E , 8 ; E Ese , 9 Mf % 9 0V . E 8“

13、_s+ , E 8 bW |_ VBS= | . - X?C16,17, L ;_ H , Tv ; _ ; Z_ , VB“ m ( m 7). m B Z_ f ( m 8). ?C : f M+ 3F8 bW |_ MM1 , 7+“ “ a _s SM “ . E L VBF , c S , 3F;+ZE17. Monte Carlo E , VW%s E il . m 7 _ ; Uim m 8 “ ; M 100 S S G ? 37 m 8 A U _8 ET , # LT1 . LHq : o 650 nm LEDv , “ , 8 xZ_ . l oa| q i , o 8_

14、8 H , ETB L v , o 8 Q F; . N , 9F k 8s , / L F . 8Z_ x-y = , |_ V B%s =h . 20% 0.2 m L o 80% 1 m k8 , 8 |_ xC 10, i 10 z s =h H , ET LTKz . N o 8F_8 V1 V F ; . 5 Monte Carlo EZE , ; .l? p . Monte Carlo E V e , E6 ;08“ .lV , iv ;0d9 . , YVM 8a |_aF bWs , # _HHq , VW% ; . ? p , # e/ Y . ?C , f 8FFs H

15、, ; bWd9s+F f , F , yN 3F ; ? f . ETA U , a bW e/ , VrQ ;0 D , A4i m1sO q . 8 EA U , 8“ VF LQ 3F“ ; + . I D 1 Chen K, Perelman L T, Zhang Q G, et al. Optical computed tomography in a turbid medium using early arriving photons. J Biomed Opt, 2000, 5(2): 144i152 2 Gan X, Schilders S P, Gu M. Image for

16、mation in turbid media under a microscope. J Opt Soc Am A, 1998, 15(8): 2052i2058 3 Wang Q Z, Liang X, Wang L, et al. Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium. Opt Lett, 1995, 20(13): 1498i1500 4 Schmitt J M. Optical coherence tomography (OCT): a r

17、eview. IEEE J Sel Top Quant Elec, 1999, 5(4): 1205i1215 5 Schmitt J M, Gandjbakhche A H, Bonner R F. Use of polarized light to discriminate short path photons in a multiply scattering medium. Appl Opt, 1992, 31(30): 6535i6546 6 Shao H, He Y, Li W, et al. Polarization-degree imaging contrast in turbi

18、d media: a quantitative study. Appl Optics, 2006, 45(15): 4491i4496 7 Wang L, Jacques S L, Zheng L. MCML-Monte Carlo modeling of photon transport in multilayered tissues. Comput Meth Prog Bio, 1995, 47(2): 131i146 8 Wang X, Wang L V. Propagation of polarized light in birefringent turbid media: a Mon

19、te Carlo study. J Biomed Opt, 2002, 7(3): 279i290 9 Wang X, Wang L V, Sun C W, et al. Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments. J Biomed Opt, 2003, 8(4): 608i617 10 Bohren C F, Huffman D R. Absorption and scattering of light by small

20、 particles. New York: Wiley, 1983. 111i112 11 Sakami M, Dogariu A. Polarized light-pulse transport through scattering media. J Opt Soc Am A, 2006, 23(3): 664i670 12 Bartel S, Hielscher A H. Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media. Appl Optics,

21、 2000, 39(10): 1580i1588 13 Li W, Shao H, He H, et al. Polarization gated imaging in turbid media: a study with Monte Carlo simulation. Fifth International Conference on Photonics and Imaging in Biology and Medicine, Wuhan Proc SPIE, 2006. 6534: 65340 14 Kienle A, Hibst R. Light guiding in biological tissue due to scattering. Phys Rev Lett, 2006, 97(1): 018104 15 Bohren C F, Huffman D R. Absorption and scattering of light by small particles. New York: Wiley, 1983. 195207 16 p , , , . L ;ZE# . S?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报