收藏 分享(赏)

2018版高中数学 第一章 常用逻辑用语 1.2.1“且”与“或”课件 新人教b版选修2-1.ppt

上传人:无敌 文档编号:102312 上传时间:2018-03-13 格式:PPT 页数:35 大小:920.50KB
下载 相关 举报
2018版高中数学 第一章 常用逻辑用语 1.2.1“且”与“或”课件 新人教b版选修2-1.ppt_第1页
第1页 / 共35页
2018版高中数学 第一章 常用逻辑用语 1.2.1“且”与“或”课件 新人教b版选修2-1.ppt_第2页
第2页 / 共35页
2018版高中数学 第一章 常用逻辑用语 1.2.1“且”与“或”课件 新人教b版选修2-1.ppt_第3页
第3页 / 共35页
2018版高中数学 第一章 常用逻辑用语 1.2.1“且”与“或”课件 新人教b版选修2-1.ppt_第4页
第4页 / 共35页
2018版高中数学 第一章 常用逻辑用语 1.2.1“且”与“或”课件 新人教b版选修2-1.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、第一章 1.2基本逻辑联结词,1.2.1“且”与“或”,1.了解联结词“且”“或”的含义.2.会用联结词“且”“或”联结或改写某些数学命题, 并判断其命题的真假.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一“且”,观察三个命题:5是10的约数;5是15的约数;5是10的约数且是15的约数,它们之间有什么关系?从集合的角度如何理解“且”的含义.,答案,命题是将命题,用“且”联结得到的新命题,“且”与集合运算中交集的定义ABx|xA且xB中“且”的意义相同,表示“并且”,“同时”的意思.“且”作为逻辑联结词,与生活用语中“既,又”相同,表示两者都要满足的意思,在日常

2、生活中经常用“和”“与”代替.,梳理,(1)定义:一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作pq,读作“ ”.当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是 命题.,p且q,假,我们将命题p和命题q以及pq的真假情况绘制为命题“pq”的真值表如下:,命题“pq”的真值表可简单归纳为“同真则真”.,(2)“且”是具有“兼有性”的逻辑联结词,对“且”的理解,可联系集合中“交集”的概念,ABx|xA且xB中的“且”是指“xA”与“xB”这两个条件都要同时满足.(3) 我们也可以用串联电路来理解联结词“且”的含义,如图所示,若开关p,q的

3、闭合与断开分别对应命题p,q的真与假,则整个电路的接通与断开对应命题pq的真与假.,知识点二“或”,命题是将命题,用逻辑联结词“或”联结得到的新命题.“或”从集合的角度看,可设Axx满足命题p,Bxx满足命题q,则“pq”对应于集合中的并集ABxxA或xB.“或”作为逻辑联结词,与日常用语中的“或”意义有所不同,而逻辑联结词中的“或”含有“同时兼有”的意思.“p或q”有三层意思:要么只是p,要么只是q,要么是p和q, 即两者中至少要有一个.,思考,答案,观察三个命题:32;32;32,它们之间有什么关系?从集合的角度谈谈对“或”的含义的理解.,梳理,(1)定义:一般地,用联结词“或”把命题p和

4、命题q联结起来,就得到一个新命题,记作pq,读作“ ”.(2)判断用“或”联结的命题的真假:当p,q两个命题有一个命题是真命题时,pq是 命题;当p,q两个命题都是假命题时,pq是 命题.我们将命题p和命题q以及pq的真假情况绘制为命题“pq”的真值表如右:,命题“pq”的真值表可简单归纳为“假假才假”.,p或q,真,假,(3)对“或”的理解:我们可联系集合中“并集”的概念ABx|xA或xB中的“或”,它是指“xA”,“xB”中至少有一个是成立的,即可以是xA且xB,也可以是xA且xB,也可以是xA且xB.(4) 我们可以用并联电路来理解联结词“或”的含义,如图所示,若开关p,q的闭合与断开对

5、应命题p,q的真与假,则整个电路的接通与断开分别对应命题pq的真与假.,题型探究,命题角度1命题形式的区分,类型一含有“且”“或”命题的构成,解答,是pq形式命题.其中p:向量有大小,q:向量有方向.,例1指出下列命题的形式及构成它的命题.(1)向量既有大小又有方向;,解答,是pq形式命题.其中p:矩形有外接圆,q:矩形有内切圆.,(2)矩形有外接圆或有内切圆;,(3)22.,解答,是pq形式命题.其中p:22,q:22.,不含有逻辑联结词的命题是简单命题;由简单命题与逻辑联结词“或”“且”构成的命题称之为复合命题.判断一个命题是简单命题还是复合命题,不能仅从字面上看它是否含有“或”“且”等逻

6、辑联结词,而应从命题的结构来看是否用逻辑联结词联结两个命题.如“四边相等且四角相等的四边形是正方形”不是“且”联结的复合命题,它是真命题,而用“且”联结的命题“四边相等的四边形是正方形且四角相等的四边形是正方形”是假命题.,反思与感悟,跟踪训练1命题“菱形对角线垂直且平分”为_形式复合命题.,答案,pq,命题角度2用逻辑联结词构造新命题,解答,p或q:梯形有一组对边平行或有一组对边相等.p且q:梯形有一组对边平行且有一组对边相等.,例2分别写出下列命题的“p且q”“p或q”形式的命题.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;,解答,p或q:1或3是方程x24x30的解.p且q:1

7、与3是方程x24x30的解.,(2)p:1是方程x24x30的解,q:3是方程x24x30的解.,用逻辑联结词“或”“且”联结p,q构成新命题时,在不引起歧义的前提下,可以把p,q中的条件或结论合并.,反思与感悟,跟踪训练2指出下列命题的构成形式及构成它的命题p,q.(1)02;,此命题为“pq”形式的命题,其中p:02;q:02.,解答,解答,此命题为“pq”形式的命题,其中p:30是5的倍数;q:30是6的倍数.,(2)30是5的倍数,也是6的倍数.,类型二“pq”和“pq”形式命题的真假判断,例3分别指出“pq”“pq”的真假.(1)p:函数ysin x是奇函数;q:函数ysin x在R

8、上单调递增;,p真,q假,“pq”为真,“pq”为假.,解答,p真,q真,“pq”为真,“pq”为真.,解答,反思与感悟,形如pq,pq命题的真假,根据真值表判定.如:,跟踪训练3分别指出由下列各组命题构成的“p或q”“p且q”形式的命题的真假.(1)p: 是无理数,q:不是无理数;,解答,p真q假,“p或q”为真,“p且q”为假.,解答,p真q真,“p或q”为真,“p且q”为真.,(2)p:集合AA,q:AAA;,解答,p假q假,“p或q”为假,“p且q”为假.,(3)p:函数yx23x4的图象与x轴有公共点,q:方程x23x40没有实数根.,类型三已知复合命题的真假求参数范围,例4设命题p

9、:函数f(x)lg(ax2x a)的定义域为R;命题q:关于x的不等式3x9x0对xR恒成立.当a0时,x0,不合题意;,(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.,解答,由x0,得3x1,y3x9x的值域为(,0).若命题q为真命题,则a0.由命题“p或q”为真命题,且“p且q”为假命题,得命题p,q一真一假.当p真q假时,a不存在;当p假q真时,0a2.满足条件的a的取值范围是a|0a2.,反思与感悟,解决此类问题的方法:首先化简所给的两个命题p,q,得到它们为真命题时,相应参数的取值范围;然后,结合复合命题的真假情形,确定参数的取值情况,常用分类讨论思想

10、.,跟踪训练4已知命题p:方程a2x2ax20在1,1上有解;命题q:只有一个实数x满足不等式x22ax2a0,若命题“p或q”是假命题,求实数a的取值范围.,解答,对于命题 p:由a2x2ax20,得(ax2)(ax1)0,p为假时得|a|1.对于命题q:只有一个实数x满足不等式x22ax2a0,即方程x22ax2a0与x轴只有一个交点,由4a28a0,得a0或a2.q为假时得a0且a2.又命题“p或q”为假,即p与q都为假命题,a的取值范围是(1,0)(0,1).,当堂训练,pq,见真则真,故必有pq为真.,1.已知命题p、q,若p为真命题,则A.pq必为真 B.pq必为假C.pq必为真

11、D.pq必为假,答案,解析,1,2,3,4,2.已知 p:函数ysin x的最小正周期为 ,q:函数ysin 2x的图象关于直线x对称,则pq是_命题.(填“真”或“假”),答案,解析,据题意得命题 p为假命题,命题q也是假命题,故 pq是假命题.,假,1,2,3,4,3.已知命题p:函数f(x)(2a1)xb在R上是减函数;命题q:函数g(x)x2ax在1,2上是增函数,若pq为真,则实数a的取值范围是_.,答案,解析,命题 p:由函数f(x)在R上为减函数得2a10,解得a .命题 q:由函数g(x)x2ax在1,2上是增函数,得 1,解得a2.由 pq为真得 p、q都为真,故a的取值范围

12、为(, )2,),即为2, ).,1,2,3,4,4.已知命题p:函数f(x)(xm)(x4)为偶函数;命题q:方程x2(2m1)x42m0的一个根大于2,一个根小于2,若pq为假,pq为真,求实数m的取值范围.,若命题p为真,则由f(x)x2(m4)x4m,得m40,解得m4.设g(x)x2(2m1)x42m,其图象开口向上,若命题q为真,则g(2)0,即22(2m1)242m0,解得m3.由pq为假,pq为真,得p假q真或p真q假.若p假q真,则m3且m4;若p真q假,则m无解.所以m的取值范围为(,4)(4,3).,解答,1,2,3,4,规律与方法,1.判断不含有逻辑联结词的命题构成形式关键是:弄清构成它的命题条件、结论.2.对用逻辑联结词联结的复合命题的真假进行判断时,首先找出构成复合命题的简单命题,判断简单命题的真假,然后分析构成形式,根据构成形式判断复合命题的真假.(1)“pq”形式的命题简记为:同真则真,一假则假;(2)“pq”形式的命题简记为:同假则假,一真则真.,本课结束,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报