分享
分享赚钱 收藏 举报 版权申诉 / 36

类型(人教版)高中数学必修5课件:第2章 数列2.2 第2课时 .ppt

  • 上传人:精品文库
  • 文档编号:10210451
  • 上传时间:2019-10-20
  • 格式:PPT
  • 页数:36
  • 大小:1.22MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    (人教版)高中数学必修5课件:第2章 数列2.2 第2课时 .ppt
    资源描述:

    1、第2课时 等差数列的性质,自主学习 新知突破,1进一步了解等差数列的项与序号之间的规律 2理解等差数列的性质 3掌握等差数列的性质及其应用,等差数列中项与序号的关系,(1)若an是公差为d的等差数列,则下列数列: can(c为任一常数)是公差为_的等差数列; can(c为任一常数)是公差为_的等差数列; anank(k为常数,kN*)是公差为_的等差数列 (2)若an,bn分别是公差为d1,d2的等差数列,则数列panqbn(p,q是常数)是公差为_的等差数列,等差数列的性质,d,cd,2d,pd1qd2,对等差数列的性质的理解 (1)第一条性质是指等号两边都是和,等号两边都是两项特别地,当m

    2、n2r时(m,n,rN*)aman2ar. (2)从等差数列an中,等距离抽取一项,所得的数列仍为等差数列,当然公差也随之发生变化,(3)将等差数列各项都乘以同一个常数k,所得数列仍为等差数列,公差为kd. (4)形如a1a2a3,a4a5a6,a7a8a9,的抽取,实际上是3a2,3a5,3a8当然成等差数列对于每2项,4项,5项抽取,道理是相同的 (5)a1ana2an1a3an2,1已知an为等差数列,a2a812,则a5等于( ) A4 B5 C6 D7 解析: a2a82a512,a56. 答案: C,2在等差数列an中,已知a12,a2a313,则a4a5a6等于( ) A40 B

    3、42 C43 D45 解析: a2a32a13d,d3,a4a5a6a1a2a333d42. 答案: B,3已知an为等差数列,a3a822,a67,则a5_. 解析: a3a8a5a622,a522a622715. 答案: 15,4在等差数列an中, (1)已知a2a3a23a2448,求a13; (2)已知a2a3a4a534,a2a552,求公差d. 解析: 方法一:(1)直接化成a1和d的方程如下:(a1d)(a12d)(a122d)(a123d)48,即4(a112d)48,4a1348,a1312.,合作探究 课堂互动,等差数列性质的应用,在等差数列an中,已知a2a3a10a11

    4、36,则a5a8_. 思路点拨 由题目可获取以下主要信息:数列an为等差数列;a2a3a10a1136;求a5a8.解答本题可利用性质:在等差数列an中,若mnpq(m,n,p,qN*),则amanapaq,也可引入公差d和首项a1对已知和所求进行化简求解,解析: 方法一:根据等差数列的性质可得: a5a8a3a10a2a1136218. 方法二:根据题意,有 (a1d)(a12d)(a19d)(a110d)36,4a122d36,则2a111d18.而a5a8(a14d)(a17d)2a111d,因此,a5a818. 答案: 18,法一运用了等差数列的性质,若pqmn(p,q,m,nN*),

    5、则apaqaman;法二设出了a1,d但并没有求出a1,d.事实上也求不出来,这种“设而不求”的方法在数学中是一种常用方法,它体现了整体求解的思想.,1在等差数列an中,a7a916,a41,则a12的值是( ) A15 B30 C31 D64,解析: 方法一:设等差数列的首项为a1,公差为d,则由a7a916得2a114d16,由a41,得a13d1.两式相减得a111d15,即a1215. 方法二:79412,a7a9a4a12,a12a7a9a415. 答案: A,等差数列的运算,(1)三个数成等差数列,和为6,积为24,求这三个数; (2)四个数成递增等差数列,中间两数的和为2,首末两

    6、项的积为8,求这四个数 思路点拨 (1)根据三个数成等差数列,可设这三个数为ad,a,ad(d为公差); (2)四个数成递增等差数列,且中间两数的和已知,可设为a3d,ad,ad,a3d(公差为2d),边听边记 (1)方法一:设等差数列的等差中项为a,公差为d, 则这三个数分别为ad,a,ad. 依题意,3a6且a(ad)(ad)24, 所以a2,代入a(ad)(ad)24, 化简得d216,于是d4, 故三个数为2,2,6或6,2,2.,方法二:设首项为a,公差为d,这三个数分别为a,ad,a2d, 依题意,3a3d6且a(ad)(a2d)24, 所以a2d,代入a(ad)(a2d)24,

    7、得2(2d)(2d)24,4d212, 即d216,于是d4,三个数为2,2,6或6,2,2.,(2)方法一:设这四个数为a3d,ad,ad,a3d(公差为2d), 依题意,2a2,且(a3d)(a3d)8, 即a1,a29d28, d21,d1或d1. 又四个数成递增等差数列,所以d0, d1,故所求的四个数为2,0,2,4.,利用等差数列的定义巧设未知量,可以简化计算一般地有如下规律:当等差数列an的项数n为奇数时,可设中间一项为a,再用公差为d向两边分别设项:a2d,ad,a,ad,a2d,;当项数为偶数项时,可设中间两项为ad,ad,再以公差为2d向两边分别设项:a3d,ad,ad,a

    8、3d,这样可减少计算量,2已知成等差数列的四个数,四个数之和为26,第二个数与第三个数之积为40,求这个等差数列,综合运用题,(1)判断一个数列是等差数列的基本方法是紧扣定义:an1and(d为常数),也可以用an1ananan1(n2)进行判断本题属于“生成数列问题”,关键是利用整体代换的思想方法 (2)若要判断一个数列不是等差数列,只需举出一个反例即可,3梯子的最高一级宽33 cm,最低一级宽110 cm,中间还有10级,已知各级的宽度成等差数列,试计算中间各级的宽度 解析: 用an表示题中的等差数列由已知条件得a133,a12110,n12.设公差为d,则a12a1(121)d, 即11

    9、03311d,解得d7. 因此,a233740,a3332747,a1133107103. 中间各级的宽度分别为40 cm,47 cm,54 cm,61 cm,68 cm,75 cm,82 cm,89 cm,96 cm,103 cm.,已知两个等差数列an和bn,且an为2,5,8,bn为1,5,9,它们的项数均为40项,则它们有多少个彼此具有相同数值的项? 【错解】 由已知两等差数列的前三项,容易求得它们的通项公式分别为: an3n1,bn4n3(1n40,且nN*), 令anbn,得3n14n3,即n2. 所以两数列只有1个数值相同的项,即第2项,【错因】 本题所说的是数值相同的项,但它们的项数并不一定相同,也就是说,只看这个数在两个数列中有没有出现过,而并不是这两个数列的第几项,高效测评 知能提升,谢谢观看!,

    展开阅读全文
    提示  道客多多所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(人教版)高中数学必修5课件:第2章 数列2.2 第2课时 .ppt
    链接地址:https://www.docduoduo.com/p-10210451.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    道客多多用户QQ群:832276834  微博官方号:道客多多官方   知乎号:道客多多

    Copyright© 2025 道客多多 docduoduo.com 网站版权所有世界地图

    经营许可证编号:粤ICP备2021046453号    营业执照商标

    1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10.png



    收起
    展开