收藏 分享(赏)

第5章 模拟调制系统.ppt

上传人:gnk289057 文档编号:10171624 上传时间:2019-10-16 格式:PPT 页数:132 大小:5.06MB
下载 相关 举报
第5章 模拟调制系统.ppt_第1页
第1页 / 共132页
第5章 模拟调制系统.ppt_第2页
第2页 / 共132页
第5章 模拟调制系统.ppt_第3页
第3页 / 共132页
第5章 模拟调制系统.ppt_第4页
第4页 / 共132页
第5章 模拟调制系统.ppt_第5页
第5页 / 共132页
点击查看更多>>
资源描述

1、1,第2章 模拟调制系统,2,定时系统,同步系统,编码信道,3,一、主要内容: 调制的基本概念和作用、分类 幅度调制的主要类型,及各自的调制解调方法、波形、频谱、带宽、及抗噪声性能 角度调制的主要类型,及各自的调制解调方法、功率、带宽、及抗噪声性能 二、主要要求 了解模拟调制及其解调的原理 掌握各种已调信号的时域波形和频谱结构,系统的抗噪声性能 了解加重与去加重的概念 三、重点: 信噪比增益 已调信号表达式的写法及分析、波形画法及分析 卡森公式 四、难点: 信噪比增益 角度调制中最大频偏的概念和计算,4,第2章 模拟调制系统,基本概念 调制 把信号转换成适合在信道中传输的形式的一种过程。 广义

2、调制 分为基带调制和带通调制(也称载波调制)。 狭义调制 仅指带通调制。在无线通信和其他大多数场合,调制一词均指载波调制。 调制信号 指来自信源的基带信号 载波调制 用调制信号去控制载波的参数的过程。 载波 未受调制的周期性振荡信号,它可以是正弦波,也可以是非正弦波。 已调信号 载波受调制后称为已调信号。 解调(检波) 调制的逆过程,其作用是将已调信号中的调制信号恢复出来。,5,调制的目的 提高无线通信时的天线辐射效率。 把多个基带信号分别搬移到不同的载频处,以实现信道的多路复用,提高信道利用率。 扩展信号带宽,提高系统抗干扰、抗衰落能力,还可实现传输带宽与信噪比之间的互换。 调制方式 模拟调

3、制 数字调制 常见的模拟调制 幅度调制:调幅、双边带、单边带和残留边带 角度调制:频率调制、相位调制,6,2.1幅度调制(线性调制)的原理 一般原理 表示式: 设:正弦型载波为式中,A 载波幅度;c 载波角频率;0 载波初始相位(以后假定0 0)。 则根据调制定义,幅度调制信号(已调信号)一般可表示成式中, m(t) 基带调制信号。,7,频谱 设调制信号m(t)的频谱为M(),则已调信号的频谱为由以上表示式可见,在波形上,已调信号的幅度随基带信号的规律而正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移(精确到常数因子)。由于这种搬移是线性的,因此,幅度调制通常又称为线性调

4、制。但应注意,这里的“线性”并不意味着已调信号与调制信号之间符合线性变换关系。事实上,任何调制过程都是一种非线性的变换过程。,8,2.1.1调幅(AM) 时域表示式式中 m(t) 调制信号,均值为0;A0 常数,表示叠加的直流分量。 频谱:若m(t)为确知信号,则AM信号的频谱为若m(t)为随机信号,则已调信号的频域表示式必须用功率谱描述。 调制器模型,9,波形图 由波形可以看出,当满足条件:|m(t)| A0时,其包络与调制信号波形相同,因此用包络检波法很容易恢复出原始调制信号。 否则,出现“过调幅”现象。这时用包络检波将发生失真。但是,可以采用其他的解调方法,如同步检波。,10,频谱图 由

5、频谱可以看出,AM信号的频谱由载频分量上边带下边带三部分组成。 上边带的频谱结构与原调制信号的频谱结构相同,下边带是上边带的镜像。,11,AM信号的特性 带宽:它是带有载波分量的双边带信号,带宽是基带信号带宽 fH 的两倍: 功率:当m(t)为确知信号时,若则式中 Pc = A02/2 载波功率, 边带功率。,12,调制效率由上述可见,AM信号的总功率包括载波功率和边带功率两部分。只有边带功率才与调制信号有关,载波分量并不携带信息。有用功率(用于传输有用信息的边带功率)占信号总功率的比例称为调制效率:当m(t) = Am cos mt时,代入上式,得到当|m(t)|max = A0时(100调

6、制),调制效率最高,这时max 1/3,13,2.1.2 双边带调制(DSB) 时域表示式:无直流分量A0频谱:无载频分量 曲线:,14,调制效率:100 优点:节省了载波功率 缺点:不能用包络检波,需用相干检波,较复杂。2.1.3 单边带调制(SSB) 原理: 双边带信号两个边带中的任意一个都包含了调制信号频谱M()的所有频谱成分,因此仅传输其中一个边带即可。这样既节省发送功率,还可节省一半传输频带,这种方式称为单边带调制。 产生SSB信号的方法有两种:滤波法和相移法。,15,滤波法及SSB信号的频域表示 滤波法的原理方框图 用边带滤波器,滤除不要的边带: 图中,H()为单边带滤波器的传输函

7、数,若它具有如下理想高通特性:则可滤除下边带。若具有如下理想低通特性:则可滤除上边带。,16,SSB信号的频谱上边带频谱图:,17,滤波法的技术难点 滤波特性很难做到具有陡峭的截止特性 例如,若经过滤波后的话音信号的最低频率为300Hz,则上下边带之间的频率间隔为600Hz,即允许过渡带为600Hz。在600Hz过渡带和不太高的载频情况下,滤波器不难实现;但当载频较高时,采用一级调制直接滤波的方法已不可能实现单边带调制。 可以采用多级(一般采用两级)DSB调制及边带滤波的方法,即先在较低的载频上进行DSB调制,目的是增大过渡带的归一化值,以利于滤波器的制作。再在要求的载频上进行第二次调制。 当

8、调制信号中含有直流及低频分量时滤波法就不适用了。,18,相移法和SSB信号的时域表示 SSB信号的时域表示式设单频调制信号为载波为则DSB信号的时域表示式为若保留上边带,则有若保留下边带,则有,19,将上两式合并:式中,“”表示上边带信号,“+”表示下边带信号。希尔伯特变换:上式中Am sinmt可以看作是Am cosmt 相移/2的结果。把这一相移过程称为希尔伯特变换,记为“ ”,则有这样,上式可以改写为,20,把上式推广到一般情况,则得到 式中,若M()是m(t)的傅里叶变换,则式中上式中的-jsgn可以看作是希尔伯特滤波器传递函数,即,21,移相法SSB调制器方框图优点:不需要滤波器具有

9、陡峭的截止特性。 缺点:宽带相移网络难用硬件实现。,22,(补充)希尔伯特变换,通常称f(t)的正交信号为f(t)的希尔伯特变换,23,1/t,1/(-t),希尔波特滤波器,希尔伯特滤波器的传递函数:,24,希尔伯特滤波器幅频、相频特性,Hilbert滤波器实质上是一个宽带相移网络,幅度不变,所有的频率分量均相移/2。,25,Hilbert变换的性质,性质1 性质2 性质3:若f(t)的频带限于 ,则有性质4:若f(t)的傅立叶变换为F(),则Hf(t)的傅立叶变换为,26,时域表达式,一般的时域表达式,其中: 是f(t)的所有频率分量相移/2的结果。,频域表达式,显然,27,相移法形成单边带

10、信号的方框图,28,图 相移法中各点频谱变换关系,29,取 略大于max,,(Weaver法),30,SSB信号的解调SSB信号的解调和DSB一样,不能采用简单的包络检波,因为SSB信号也是抑制载波的已调信号,它的包络不能直接反映调制信号的变化,所以仍需采用相干解调。 SSB信号的性能SSB信号的实现比AM、DSB要复杂,但SSB调制方式在传输信息时,不仅可节省发射功率,而且它所占用的频带宽度比AM、DSB减少了一半。它目前已成为短波通信中一种重要的调制方式。,31,2.1.4 残留边带(VSB)调制 原理:残留边带调制是介于SSB与DSB之间的一种折中方式,它既克服了DSB信号占用频带宽的缺

11、点,又解决了SSB信号实现中的困难。在这种调制方式中,不像SSB那样完全抑制DSB信号的一个边带,而是逐渐切割,使其残留小部分,如下图所示:,32,调制方法:用滤波法实现残留边带调制的原理框图与滤波法SBB调制器相同。不过,这时图中滤波器的特性应按残留边带调制的要求来进行设计,而不再要求十分陡峭的截止特性,因而它比单边带滤波器容易制作。,33,对残留边带滤波器特性的要求 由滤波法可知,残留边带信号的频谱为为了确定上式中残留边带滤波器传输特性H()应满足的条件,我们来分析一下接收端是如何从该信号中恢复原基带信号的。,34,VSB信号解调器方框图图中因为根据频域卷积定理可知,乘积sp(t)对应的频

12、谱为,35,将代入得到式中M( + 2c)及M( - 2c)是搬移到+ 2c和 -2c处的频谱,它们可以由解调器中的低通滤波器滤除。于是,低通滤波器的输出频谱为,36,显然,为了保证相干解调的输出无失真地恢复调制信号m(t),上式中的传递函数必须满足: 式中,H 调制信号的截止角频率。 上述条件的含义是:残留边带滤波器的特性H()在c处必须具有互补对称(奇对称)特性, 相干解调时才能无失真地从残留边带信号中恢复所需的调制信号。,37,残留边带滤波器特性的两种形式 残留“部分上边带”的滤波器特性:下图(a) 残留“部分下边带”的滤波器特性 :下图(b),38,2.1.5 线性调制的一般模型 滤波

13、法模型在前几节的讨论基础上,可以归纳出滤波法线性调制的一般模型如下: 按照此模型得到的输出信号时域表示式为:按照此模型得到的输出信号频域表示式为:式中,只要适当选择H(),便可以得到各种幅度调制信号。,39,移相法模型将上式展开,则可得到另一种形式的时域表示式,即式中上式表明,sm(t)可等效为两个互为正交调制分量的合成。由此可以得到移相法线性调制的一般模型如下:,40,它同样适用于所有线性调制。,41,2.1.6 相干解调与包络检波 相干解调 相干解调器的一般模型 相干解调器原理:为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(称为相干载波),它

14、与接收的已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带调制信号。,42,相干解调器性能分析已调信号的一般表达式为 与同频同相的相干载波c(t)相乘后,得经低通滤波器后,得到因为sI(t)是m(t)通过一个全通滤波器HI () 后的结果,故上式中的sd(t)就是解调输出,即,43,包络检波 适用条件:AM信号,且要求|m(t)|max A0 , 包络检波器结构:通常由半波或全波整流器和低通滤波器组成。例如,性能分析设输入信号是 选择RC满足如下关系式中fH 调制信号的最高频率在大信号检波时(一般大于0.5 V),二极管处于受控的开关状态,检波器的输出为隔去直流后即可得到原信号m(t

15、)。,44,2.2 线性调制系统的抗噪声性能 2.2.1 分析模型图中 sm (t) 已调信号n(t) 信道加性高斯白噪声ni (t) 带通滤波后的噪声m(t) 输出有用信号no(t) 输出噪声,45,噪声分析ni(t)为平稳窄带高斯噪声,它的表示式为或由于式中 Ni 解调器输入噪声的平均功率设白噪声的单边功率谱密度为n0,带通滤波器是高度为1、带宽为B的理想矩形函数,则解调器的输入噪声功率为,46,解调器输出信噪比定义输出信噪比反映了解调器的抗噪声性能。显然,输出信噪比越大越好。 制度增益定义:用G便于比较同类调制系统采用不同解调器时的性能。G 也反映了这种调制制度的优劣。式中输入信噪比Si

16、 /Ni 的定义是:,47,2.2.2 DSB调制系统的性能 DSB相干解调抗噪声性能分析模型 由于是线性系统,所以可以分别计算解调器输出的信号功率和噪声功率。,48,噪声功率计算 设解调器输入信号为与相干载波cosct相乘后,得经低通滤波器后,输出信号为因此,解调器输出端的有用信号功率为,49,解调器输入端的窄带噪声可表示为它与相干载波相乘后,得经低通滤波器后,解调器最终的输出噪声为故输出噪声功率为或写成,50,信号功率计算解调器输入信号平均功率为信噪比计算 输入信噪比输出信噪比,51,制度增益由此可见,DSB调制系统的制度增益为2。也就是说,DSB信号的解调器使信噪比改善一倍。这是因为采用

17、相干解调,使输入噪声中的正交分量被消除的缘故。,52,SSB调制系统的性能 噪声功率这里,B = fH 为SSB 信号的带通滤波器的带宽。 信号功率SSB信号与相干载波相乘后,再经低通滤波可得解调器输出信号因此,输出信号平均功率,53,输入信号平均功率为信噪比 单边带解调器的输入信噪比为,54,单边带解调器的输出信噪比为制度增益讨论: 因为在SSB系统中,信号和噪声有相同表示形式,所以相干解调过程中,信号和噪声中的正交分量均被抑制掉,故信噪比没有改善。,55,讨论 上述表明,GDSB = 2GSSB,这能否说明DSB系统的抗噪声性能比SSB系统好呢?回答是否定的。下面给予说明:,56,2.2.

18、4 AM包络检波的性能 包络检波器分析模型检波输出电压正比于输入信号的包络变化。,57,输入信噪比计算设解调器输入信号为解调器输入噪声为则解调器输入的信号功率和噪声功率分别为输入信噪比为,58,包络计算由于解调器输入是信号加噪声的混合波形,即式中上式中E(t)便是所求的合成包络。当包络检波器的传输系数为1时,则检波器的输出就是E(t)。,59,输出信噪比计算 大信噪比情况输入信号幅度远大于噪声幅度,即因而式可以简化为,60,由上式可见,有用信号与噪声独立地分成两项,因而可分别计算它们的功率。输出信号功率为输出噪声功率为故输出信噪比为制度增益为,61,讨论1. AM信号的调制制度增益GAM随A0

19、的减小而增加。2. GAM总是小于1,这说明包络检波器对输入信噪比没有改善,而是恶化了。3. 例如:对于100%的调制,且m(t)是单频正弦信号,这时AM 的最大信噪比增益为4. 可以证明,采用同步检测法解调AM信号时,得到的调制制度增益与上式给出的结果相同。 5. 由此可见,对于AM调制系统,在大信噪比时,采用包络检波器解调时的性能与同步检测器时的性能几乎一样。,62,小信噪比情况此时,输入信号幅度远小于噪声幅度,即包络变成其中R(t) 和 (t) 代表噪声的包络及相位:,63,因为 所以,可以把E(t)进一步近似:此时,E(t)中没有单独的信号项,有用信号m(t)被噪声扰乱,只能看作是噪声

20、。 这时,输出信噪比不是按比例地随着输入信噪比下降,而是急剧恶化,通常把这种现象称为解调器的门限效应。开始出现门限效应的输入信噪比称为门限值。,64,讨论1. 门限效应是由包络检波器的非线性解调作用引起的。 2. 用相干解调的方法解调各种线性调制信号时不存在门限效应。原因是信号与噪声可分别进行解调,解调器输出端总是单独存在有用信号项。3. 在大信噪比情况下,AM信号包络检波器的性能几乎与相干解调法相同。但当输入信噪比低于门限值时,将会出现门限效应,这时解调器的输出信噪比将急剧恶化,系统无法正常工作。,65,2.3 非线性调制(角度调制)的原理 前言 频率调制简称调频(FM),相位调制简称调相(

21、PM)。 这两种调制中,载波的幅度都保持恒定,而频率和相位的变化都表现为载波瞬时相位的变化。 角度调制:频率调制和相位调制的总称。 已调信号频谱不再是原调制信号频谱的线性搬移,而是频谱的非线性变换,会产生与频谱搬移不同的新的频率成分,故又称为非线性调制。 与幅度调制技术相比,角度调制最突出的优势是其较高的抗噪声性能。,66,2.3.1角度调制的基本概念 FM和PM信号的一般表达式角度调制信号的一般表达式为式中,A 载波的恒定振幅; ct +(t) (t) 信号的瞬时相位;(t) 瞬时相位偏移。 dct +(t)/dt = (t) 称为瞬时角频率 d(t)/dt 称为瞬时频偏。,67,相位调制(

22、PM):瞬时相位偏移随调制信号作线性变化,即式中Kp 调相灵敏度,含义是单位调制信号幅度引起PM信号的相位偏移量,单位是rad/V。将上式代入一般表达式得到PM信号表达式,68,频率调制(FM):瞬时频率偏移随调制信号成比例变化,即式中 Kf 调频灵敏度,单位是rad/sV。 这时相位偏移为将其代入一般表达式得到FM信号表达式,69,PM与 FM的区别比较上两式可见, PM是相位偏移随调制信号m(t)线性变化,FM是相位偏移随m(t)的积分呈线性变化。 如果预先不知道调制信号m(t)的具体形式,则无法判断已调信号是调相信号还是调频信号。,70,单音调制FM与PM设调制信号为单一频率的正弦波,即

23、 用它对载波进行相位调制时,将上式代入 得到式中,mp = Kp Am 调相指数,表示最大的相位偏移。,71,用它对载波进行频率调制时,将代入得到FM信号的表达式式中调频指数,表示最大的相位偏移最大角频偏 最大频偏。,72,PM 信号和FM 信号波形(a) PM 信号波形 (b) FM 信号波形,73,FM与PM之间的关系 由于频率和相位之间存在微分与积分的关系,所以FM与PM之间是可以相互转换的。 比较下面两式可见如果将调制信号先微分,而后进行调频,则得到的是调相波,这种方式叫间接调相;同样,如果将调制信号先积分,而后进行调相,则得到的是调频波,这种方式叫间接调频。,74,方框图,75,2.

24、3.2 窄带调频(NBFM) 定义:如果FM信号的最大瞬时相位偏移满足下式条件则称为窄带调频;反之,称为宽带调频。,76,时域表示式将FM信号一般表示式展开得到当满足窄带调频条件时,故上式可简化为,77,频域表示式利用以下傅里叶变换对可得NBFM信号的频域表达式,(设m(t)的均值为0),78,NBFM和AM信号频谱的比较两者都含有一个载波和位于处的两个边带,所以它们的带宽相同 不同的是,NBFM的两个边频分别乘了因式1/( - c)和1/( + c) ,由于因式是频率的函数,所以这种加权是频率加权,加权的结果引起调制信号频谱的失真。 另外,NBFM的一个边带和AM反相。,79,NBFM和AM

25、信号频谱的比较举例以单音调制为例。设调制信号 则NBFM信号为AM信号为按照上两式画出的频谱图和矢量图如下:,80,频谱图,81,矢量图(a) AM (b) NBFM在AM中,两个边频的合成矢量与载波同相,所以只有幅度的变化,无相位的变化;而在NBFM中,由于下边频为负,两个边频的合成矢量与载波则是正交相加,所以NBFM不仅有相位的变化,幅度也有很小的变化。这正是两者的本质区别 。由于NBFM信号最大频率偏移较小,占据的带宽较窄,但是其抗干扰性能比AM系统要好得多,因此得到较广泛的应用。,82,2.3.3 宽带调频 调频信号表达式 设:单音调制信号为则单音调制FM信号的时域表达式为将上式利用三

26、角公式展开,有将上式中的两个因子分别展成傅里叶级数,式中 Jn (mf) 第一类n阶贝塞尔函数,83,Jn (mf)曲线,84,将代入并利用三角公式及贝塞尔函数的性质则得到FM信号的级数展开式如下:,85,调频信号的频域表达式对上式进行傅里叶变换,即得FM信号的频域表达式,+,-,=,86,讨论:由上式可见 调频信号的频谱由载波分量c和无数边频(c nm)组成。 当n = 0时是载波分量c ,其幅度为AJ0 (mf) 当n 0时是对称分布在载频两侧的边频分量(c nm) ,其幅度为AJn (mf),相邻边频之间的间隔为m;且当n为奇数时,上下边频极性相反; 当n为偶数时极性相同。 由此可见,F

27、M信号的频谱不再是调制信号频谱的线性搬移,而是一种非线性过程。,87,某单音宽带调频波的频谱:图中只画出了单边振幅谱。,88,调频信号的带宽 理论上调频信号的频带宽度为无限宽。 实际上边频幅度随着n的增大而逐渐减小,因此调频信号可近似认为具有有限频谱。 通常采用的原则是,信号的频带宽度应包括幅度大于未调载波的10%以上的边频分量。 当mf 1以后,取边频数n = mf + 1即可。因为n mf + 1以上的边频幅度均小于0.1。 被保留的上、下边频数共有2n = 2(mf + 1)个,相邻边频之间的频率间隔为fm,所以调频波的有效带宽为它称为卡森(Carson)公式。,89,当mf 1时,上式

28、可以近似为这就是宽带调频的带宽。 当任意限带信号调制时,上式中fm是调制信号的最高频率, mf是最大频偏 f 与 fm之比。 例如,调频广播中规定的最大频偏f为75kHz,最高调制频率fm为15kHz,故调频指数mf 5,由上式可计算出此FM信号的频带宽度为180kHz。,90,调频信号的功率分配 调频信号的平均功率为由帕塞瓦尔定理可知 利用贝塞尔函数的性质得到 上式说明,调频信号的平均功率等于未调载波的平均功率,即调制后总的功率不变,只是将原来载波功率中的一部分分配给每个边频分量。,91,2.3.4 调频信号的产生与解调 调频信号的产生 直接调频法:用调制信号直接去控制载波振荡器的频率,使其

29、按调制信号的规律线性地变化。 压控振荡器:每个压控振荡器(VCO)自身就是一个FM调制器,因为它的振荡频率正比于输入控制电压,即方框图LC振荡器:用变容二极管实现直接调频。,92,直接调频法的主要优缺点:优点:可以获得较大的频偏。缺点:频率稳定度不高 改进途径:采用如下锁相环(PLL)调制器,93,间接法调频 阿姆斯特朗(Armstrong)法 原理:先将调制信号积分,然后对载波进行调相,即可产生一个窄带调频(NBFM)信号,再经n次倍频器得到宽带调频 (WBFM) 信。 方框图,94,间接法产生窄带调频信号由窄带调频公式可知,窄带调频信号可看成由正交分量与同相分量合成的。所以可以用下图产生窄

30、带调频信号:,95,倍频:目的:为提高调频指数,从而获得宽带调频。方法:倍频器可以用非线性器件实现。原理:以理想平方律器件为例,其输出-输入特性为当输入信号为调频信号时,有由上式可知,滤除直流成分后,可得到一个新的调频信号,其载频和相位偏移均增为2倍,由于相位偏移增为2倍,因而调频指数也必然增为2倍。 同理,经n次倍频后可以使调频信号的载频和调频指数增为n倍。,96,典型实例:调频广播发射机载频:f1 = 200kHz 调制信号最高频率 fm = 15kHz 间接法产生的最大频偏 f1 = 25 Hz 调频广播要求的最终频偏 f =75 kHz,发射载频在88-108 MHz频段内,所以需要经

31、过次的倍频,以满足最终频偏=75kHz的要求。但是,倍频器在提高相位偏移的同时,也使载波频率提高了,倍频后新的载波频率(nf1 )高达600MHz,不符合 fc =88-108MHz的要求,因此需用混频器进行下变频来解决这个问题。,97,具体方案,98,【例5-1】 在上述宽带调频方案中,设调制信号是fm =15 kHz的单频余弦信号,NBFM信号的载频f1 =200 kHz,最大频偏f1 =25 Hz;混频器参考频率f2 = 10.9 MHz,选择倍频次数n1 = 64,n2 =48。(1) 求NBFM信号的调频指数;(2) 求调频发射信号(即WBFM信号)的载频、最大频偏和调频指数。【解】

32、(1)NBFM信号的调频指数为(2)调频发射信号的载频为,99,(3) 最大频偏为(4) 调频指数为,100,调频信号的解调 非相干解调:调频信号的一般表达式为解调器的输出应为完成这种频率-电压转换关系的器件是频率检波器,简称鉴频器。 鉴频器的种类很多,例如振幅鉴频器、相位鉴频器、比例鉴频器、正交鉴频器、斜率鉴频器、频率负反馈解调器、锁相环(PLL)鉴频器等。 下面以振幅鉴频器为例介绍:,101,振幅鉴频器方框图图中,微分电路和包络检波器构成了具有近似理想鉴频特性的鉴频器。限幅器的作用是消除信道中噪声等引起的调频波的幅度起伏,102,微分器的作用是把幅度恒定的调频波sFM (t)变成幅度和频率

33、都随调制信号m(t)变化的调幅调频波sd (t),即包络检波器则将其幅度变化检出并滤去直流,再经低通滤波后即得解调输出式中Kd 为鉴频器灵敏度,单位为V/rad/s,103,相干解调:相干解调仅适用于NBFM信号由于NBFM信号可分解成同相分量与正交分量之和,因而可以采用线性调制中的相干解调法来进行解调,如下图所示。,104,设窄带调频信号并设相干载波 则相乘器的输出为经低通滤波器取出其低频分量 再经微分器,即得解调输出可见,相干解调可以恢复原调制信号。,105,2.4调频系统的抗噪声性能 重点讨论FM非相干解调时的抗噪声性能 分析模型图中 n(t) 均值为零,单边功率谱密度为n0的高斯白噪声

34、,106,2.4.1 输入信噪比 设输入调频信号为 故其输入信号功率为 输入噪声功率为 式中,BFM 调频信号的带宽,即带通滤波器的带宽 因此输入信噪比为,107,2.4.2 大信噪比时的解调增益 在输入信噪比足够大的条件下,信号和噪声的相互作用可以忽略,这时可以把信号和噪声分开来计算。 计算输出信号平均功率输入噪声为0时,解调输出信号为 故输出信号平均功率为,108,计算输出噪声平均功率假设调制信号m(t) = 0,则加到解调器输入端的是未调载波与窄带高斯噪声之和,即式中 包络 相位偏移,109,在大信噪比时,即A nc (t)和A ns (t)时,相位偏移 可近似为当x 1时,有arcta

35、n x x,故 由于鉴频器的输出正比于输入的频率偏移,故鉴频器的输出噪声(在假设调制信号为0时,解调结果只有噪声)为式中ns(t)是窄带高斯噪声ni(t)的正交分量。,110,由于dns(t)/dt实际上就是ns(t)通过理想微分电路的输出,故它的功率谱密度应等于ns(t)的功率谱密度乘以理想微分电路的功率传输函数。设ns(t)的功率谱密度为Pi (f) = n0,理想微分电路的功率传输函数为则鉴频器输出噪声nd(t)的功率谱密度为,111,鉴频器前、后的噪声功率谱密度如下图所示,112,由图可见,鉴频器输出噪声的功率谱密度已不再是均匀分布,而是与 f 2成正比。该噪声再经过低通滤波器的滤波,

36、滤除调制信号带宽fm以外的频率分量,故最终解调器输出(LPF输出)的噪声功率(图中阴影部分)为,113,计算输出信噪比于是,FM非相干解调器输出端的输出信噪比为简明情况考虑m(t)为单一频率余弦波时的情况,即 这时的调频信号为式中将这些关系代入上面输出信噪比公式, 得到:,114,制度增益考虑在宽带调频时,信号带宽为 所以,上式还可以写成当mf 1时有近似式上式结果表明,在大信噪比情况下,宽带调频系统的制度增益是很高的,即抗噪声性能好。例如,调频广播中常取mf ,则制度增益GFM =450。也就是说,加大调制指数,可使调频系统的抗噪声性能迅速改善。,115,调频系统与调幅系统比较在大信噪比情况

37、下,AM信号包络检波器的输出信噪比为若设AM信号为100%调制。且m(t)为单频余弦波信号,则m(t)的平均功率为 因而式中,B为AM信号的带宽,它是基带信号带宽的两倍,即B = 2fm,故有将两者相比,得到,116,讨论 在大信噪比情况下,若系统接收端的输入A和n0相同,则宽带调频系统解调器的输出信噪比是调幅系统的3mf2倍。例如,mf =5时,宽带调频的S0 /N0是调幅时的75倍。 调频系统的这一优越性是以增加其传输带宽来换取的。因为,对于AM 信号而言,传输带宽是2fm,而对WBFM信号而言,相应于mf = 5时的传输带宽为12fm ,是前者的6倍。WBFM信号的传输带宽BFM与AM

38、信号的传输带宽BAM之间的一般关系为,117,当mf 1时,上式可近似为故有在上述条件下,变为可见,宽带调频输出信噪比相对于调幅的改善与它们带宽比的平方成正比。调频是以带宽换取信噪比的改善。,118,结论:在大信噪比情况下,调频系统的抗噪声性能将比调幅系统优越,且其优越程度将随传输带宽的增加而提高。 但是,FM系统以带宽换取输出信噪比改善并不是无止境的。随着传输带宽的增加,输入噪声功率增大,在输入信号功率不变的条件下,输入信噪比下降,当输入信噪比降到一定程度时就会出现门限效应,输出信噪比将急剧恶化。,119,2.4.3 小信噪比时的门限效应 当(Si /Ni)低于一定数值时,解调器的输出信噪比

39、(So /No)急剧恶化,这种现象称为调频信号解调的门限效应。 门限值 出现门限效应时所对应的输入信噪比值称为门限值,记为(Si /Ni) b。,120,右图画出了单音调制时在不同调制指数下,调频解调器的输出信噪比与输入信噪比的关系曲线。 由此图可见 门限值与调制指数mf 有关。mf 越大,门限值越高。不过不同mf 时,门限值的变化不大,大约在811dB的范围内变化,一般认为门限值为10 dB左右。 在门限值以上时, (So /No)FM与(Si /Ni)FM呈线性关系,且mf 越大,输出信噪比的改善越明显。,121,在门限值以下时, (So /No)FM将随(Si /Ni)FM的下降而急剧下

40、降。且mf越大, (So /No)FM下降越快。 门限效应是FM系统存在的一个实际问题。尤其在采用调频制的远距离通信和卫星通信等领域中,对调频接收机的门限效应十分关注,希望门限点向低输入信噪比方向扩展。 降低门限值(也称门限扩展)的方法有很多,例如,可以采用锁相环解调器和负反馈解调器,它们的门限比一般鉴频器的门限电平低610dB。 还可以采用“预加重”和“去加重”技术来进一步改善调频解调器的输出信噪比。这也相当于改善了门限。,122,2.4.4 预加重和去加重 目的: 鉴频器输出噪声功率谱随f呈抛物线形状增大。但在调频广播中所传送的语音和音乐信号的能量却主要分布在低频端,且其功率谱密度随频率的

41、增高而下降。因此,在调制频率高频端的信号谱密度最小,而噪声谱密度却是最大,致使高频端的输出信噪比明显下降,这对解调信号质量会带来很大的影响。 为了进一步改善调频解调器的输出信噪比,针对鉴频器输出噪声谱呈抛物线形状这一特点,在调频系统中广泛采用了加重技术,包括“预加重和“去加重”措施。“预加重”和“去加重”的设计思想是保持输出信号不变,有效降低输出噪声,以达到提高输出信噪比的目的。,123,原理所谓“去加重”就是在解调器输出端接一个传输特性随频率增加而滚降的线性网络Hd (f) ,将调制频率高频端的噪声衰减,使总的噪声功率减小。但是,由于去加重网络的加入,在有效地减弱输出噪声的同时,必将使传输信

42、号产生频率失真。因此,必须在调制器前加入一个预加重网络Hp(f) ,人为地提升调制信号的高频分量,以抵消去加重网络的影响。显然,为了使传输信号不失真,应该有这是保证输出信号不变的必要条件。,124,方框图:加有预加重和去加重的调频系统性能由于采用预加重/去加重系统的输出信号功率与没有采用预加重/去加重系统的功率相同,所以调频解调器的输出信噪比的改善程度可用加重前的输出噪声功率与加重后的输出噪声功率的比值确定,即上式进一步说明,输出信噪比的改善程度取决于去加重网络的特性。,125,实用电路:下图给出了一种实际中常采用的预加重和去加重电路,它在保持信号传输带宽不变的条件下,可使输出信噪比提高6 d

43、B左右。,预加重网络与网络特性,去加重网络与网络特性,126,2.5 各种模拟调制系统的比较,127,抗噪声性能WBFM抗噪声性能最好, DSB、SSB、VSB抗噪声 性能次之,AM抗噪声性 能最差。 右图画出了各种模拟调制系统的性能曲线,图中的圆点表示门限点。 门限点以下,曲线迅速下跌;门限点以上,DSB、SSB的信噪比比AM高4.7dB以上,而FM(mf = 6)的信噪比比AM高22dB。 当输入信噪比较高时,FM的调频指数mf越大,抗噪声性能越好。,128,频带利用率SSB的带宽最窄,其频带利用率最高;FM占用的带宽随调频指数mf的增大而增大,其频带利用率最低。可以说,FM是以牺牲有效性

44、来换取可靠性的。因此, mf值的选择要从通信质量和带宽限制两方面考虑。对于高质量通信(高保真音乐广播,电视伴音、双向式固定或移动通信、卫星通信和蜂窝电话系统)采用WBFM, mf值选大些。对于一般通信,要考虑接收微弱信号,带宽窄些,噪声影响小,常选用mf 较小的调频方式。,129,特点与应用 AM:优点是接收设备简单;缺点是功率利用率低,抗干扰能力差。主要用在中波和短波调幅广播。 DSB调制:优点是功率利用率高,且带宽与AM相同,但设备较复杂。应用较少,一般用于点对点专用通信。 SSB调制:优点是功率利用率和频带利用率都较高,抗干扰能力和抗选择性衰落能力均优于AM,而带宽只有AM的一半;缺点是

45、发送和接收设备都复杂。SSB常用于频分多路复用系统中。 VSB调制:抗噪声性能和频带利用率与SSB相当。在电视广播、数传等系统中得到了广泛应用。 FM: FM的抗干扰能力强,广泛应用于长距离高质量的通信系统中。缺点是频带利用率低,存在门限效应。,130,2.6 频分复用(FDM)和调频(FM)立体声 2.6.1 频分复用(FDM) 目的:充分利用信道的频带资源,提高信道利用率 原理,131,典型例子:多路载波电话系统 每路电话信号的频带限制在3003400Hz,在各路已调信号间留有防护频带,每路电话信号取4 kHz作为标准带宽 层次结构:12路电话复用为一个基群;5个基群复用为一个超群,共60路电话;由10个超群复用为一个主群,共600路电话。如果需要传输更多路电话,可以将多个主群进行复用,组成巨群。 基群频谱结构图载波频率,132,FDM 技术主要用于模拟信号,普遍应用在多路载波电话系统中。其主要优点是信道利用率高,技术成熟;缺点是设备复杂,滤波器难以制作,并且在复用和传输过程中,调制、解调等过程会不同程度地引入非线性失真,而产生各路信号的相互干扰。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报