收藏 分享(赏)

高等数学函数的单调性和凹凸性.ppt

上传人:精品资料 文档编号:10091363 上传时间:2019-10-09 格式:PPT 页数:35 大小:1.39MB
下载 相关 举报
高等数学函数的单调性和凹凸性.ppt_第1页
第1页 / 共35页
高等数学函数的单调性和凹凸性.ppt_第2页
第2页 / 共35页
高等数学函数的单调性和凹凸性.ppt_第3页
第3页 / 共35页
高等数学函数的单调性和凹凸性.ppt_第4页
第4页 / 共35页
高等数学函数的单调性和凹凸性.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、函数的单调性与曲线的凹凸性,一、函数单调性的判别法,二、曲线的凹凸与拐点,主要内容:,一、 函数单调性的判定法,o,o,a,b,a,b,从导数的几何意义考察函数的单调性:,严格单调,(2)区间内个别点导数为零,不影响区间的严格单调性.,例如,注意:,(1)定理条件中的闭区间换成一般区间,定理的结论仍然成立;,例1.,解,注意:函数的单调性是一个区间上的性质, 要用,一点处的导数符号来判别一个区间上的单调性.,导数在这一区间上的符号来判定, 而不能用,令,得,把 分成两个区间,例2.,解:,单调区间的分界点除驻点外,也可能是导数不存在的点.,说明:,把函数的定义域区间分成若干个区间,,总结求单调

2、区间的步骤,1写出函数的定义域,并求出函数的导数,2求出导函数的零点、和导数不存在的点(不可导点),3以导数等于零的点、不可导点为分点,,并确定导函数在各个区间内的符号,,从而确定函数在每个区间内的单调性。,解:,令,得,故,的单调增区间为,的单调减区间为,练习,解,5/21,例4,证,注 利用导数符号与单调性之间的关系可证明一些不等式。,练习. 证明,时, 成立不等式,证: 令,从而,因此,且,二、曲线的凹凸与拐点,图形上任意弧段位于所张弦的上方。,图形上任意弧段位于所张弦的下方。,问题: 如何用准确的数学语言描述曲线的弯曲方向?,定义1 设函数,在区间 I 上连续 ,(1) 若恒有,则称,

3、图形是凹的;,(2) 若恒有,则称,图形是凸的 .,18,曲线凹凸的判定,定理2,定理2.(凹凸判定法),(1) 在 I 内,则 在 I 内图形是凹的 ;,(2) 在 I 内,则 在 I 内图形是凸的 .,证:,设函数,在区间I 上有二阶导数,只证(2),由定义只须证:,只须证:,只须证:,记作,只须证:,定理2.(凹凸判定法),(1) 在 I 内,则 在 I 内图形是凹的 ;,(2) 在 I 内,则 在 I 内图形是凸的 .,证:,设函数,在区间I 上有二阶导数,只证(2),由定义只须证:,只须证:,分别在区间,上应用拉格朗日中值定理 得,这说明 在 I 内单调递减.,21,例5 判断曲线,

4、的凹凸性.,解,上是凸的.,22,例6,解,注意到,定义2 若连续曲线 在其上一点 的两侧凹凸性相反,则称此点为曲线 的拐点.,x,y,o,y =f (x),注:拐点是凹弧与凸弧的分界点,证,注意:,例如,例如,1写出函数的定义域,并求出函数的导数及二阶导数,2求出二阶导函数的零点、和不存在的点,3检查这些点左右两侧符号,从而判定曲线的凹凸性,注意,判断曲线的凹凸性和拐点的步骤:,例7. 求曲线,的凹凸区间及拐点.,解:,1) 求,2) 求拐点可疑点坐标,令,得,对应,3) 列表判别,故该曲线在,及,上向上凹,向上凸 ,点 ( 0 , 1 ) 及,均为拐点.,凹,凹,凸,例8 讨论 的凹凸性及拐点.,解:,x,y,o,1,曲线的凹凸性反映的是不等式关系:,(1) 若曲线的图形是凹的(即 ),则有,(2) 若曲线的图形是凸的(即 ),则有,注:利用凹凸性也可以证明一些不等式。,例9,解,31,例10,2.曲线凹凸与拐点的判别,拐点, 连续曲线上凹凸弧的分界点,小结,1. 可导函数单调性判别,在 I 上单调递增,在 I 上单调递减,思考题,思考题解答,不能断定.,例,但,当 时,,当 时,,注意 可以任意大,故在 点的任何邻域内, 都不单调递增,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报