收藏 分享(赏)

粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨_徐斌.pdf

上传人:精品资料 文档编号:10062850 上传时间:2019-10-03 格式:PDF 页数:8 大小:833.99KB
下载 相关 举报
粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨_徐斌.pdf_第1页
第1页 / 共8页
粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨_徐斌.pdf_第2页
第2页 / 共8页
粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨_徐斌.pdf_第3页
第3页 / 共8页
粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨_徐斌.pdf_第4页
第4页 / 共8页
粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨_徐斌.pdf_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、 Chinese Bulletin of Botany 2012, 47 (3): 278285, doi: 10.3724/SP.J.1259.2012.00278 iiiiiiiiiiiiiiiiii l : 2011-09-13; s : 2012-02-08 “ : SE1 S (No.31071342)av S/7 (No.2011CXJ080) 8T S “ * YTb E-mail: x X L m 9 xZE) 1, 2, y 1, i1*1v ?yF L i / 8TL. 3 L i , 225009 2v k , 225009 K1 x A-a B- C- 38b (O

2、ryza sativa)a . (Solanum tuberosum)a (Pisum sativum) (Nelumbo nucifera)x , x X- L N (XRD) 8 xo + , ) XRDo M9 ZEb q EEa q wLEaLTmE wLTmE ( V9 x XRDo M , wLTmE9 T V Lb wLTmETV , x xc ALM1 , xx ALM1b P x C-8M A-8b T XRDsx8 9 M4 1 Ib 1oM , x , x X- L , y , i (2012). x X L m 9 xZE) . 47, 278285. x 1 ? ,

3、9 1 J 1 , Bruker D8 XRDsb kHq : 40 kV, 200 mA, (2)S 340, s 1.2, 0.02b “ 30sb 1.6 x XRDo M9 x XRDo , IM1D , 4?ZE9 xM (Nara and Ko-miya, 1983; f , 2001; Huang et al., 2007; , 2010; g , 2011)b ZEB : q1 E9 XRDo , e q EEb XRDs q MDI Jade 5.09 Mb T / : P Jade 5.0 qu 7“ XRDo , | 2 430S =m , 4 30WL ; F , q1

4、o E ; F , Q q1o Q E ( EV , 2 17vM , 2 23 v9FbtTV , C- xvM A-8 , C- x A-81 B-85 ( y )(m 6)b Yu (2009) C- x 284 47(3) 2012 TMBb wLTmE , xs , TV , , xMA4 (V 3)bd9sTV , xMx ALM1 (R= 0.94), V xs1s b 3 x A-a B- C-8 XRDob q EEa q wLEa wLTmELTmE x XRDo 9 s ZEb q EEeaZL O y , TA , axb q wLE VZL y x , u 9$9 u

5、Bs , #74 bLTmEe sL , 9T V ? LM b wLTmE sL# u u 9Z TN , 9 ms q9 ?y , i O9 T1 V L , $WxXRDo 9 sb wLTmE9 xMTV , x xc ALM1 , xx ALM1b ID g , f , (2011). x9 ZE . J S 32(9), 6871. , f , SZ , u , f_ (2010). X Lx R . J S 31(3), 284 287. f , f , 3 , (2001). x8“ZE . 2 v (1 S ) 29(5), 5558. Cheetham NWH, Tao L

6、P (1998). Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36, 277 284. Gallant DJ, Bouchet B, Baldwin PM (1997). Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym 32, 177191. Huang JR

7、, Schols HA, van Soest JJG, Jin ZY, Sulmann E, Voragen AGJ (2007). Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yel-low pea starches. Food Chem 101, 13381345. Hughes T, Hoover R, Liu Q, Donner E, Chibbar R, Jaiswal S (2009). Composition, morphology, molecular str

8、ucture, and physicochemical properties of starches from newly released chickpea (Cicer arietinum L.) culti-vars grown in Canada. Food Res Int 42, 627635. Konik-Rose C, Thistleton J, Chanvrier H, Tan I, Halley P, Gidley M, Kosar-Hashemi B, Wang H, Larroque O, Ikea J, McMaugh S, Regina A, Rahman S, Mo

9、rell M, Li ZY (2007). Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat. Theor Appl Genet 115, 10531065. Lin HM, Chang YH, Lin JH, Jane JL, Sheu MJ, Lu TJ (2006). Heterogeneity of lotus rhizome starch granules as revealed by -amylase degradation. Carbohydr

10、 Polym 66, 528536. Nara S, Komiya T (1983). Studies on the relationship be-tween water-saturated state and crystallinity by the dif-fraction method for moistened potato starch. Starch 35, 407410. Sandhu KS, Lim ST (2008). Structural characteristics and in vitro digestibility of mango kernel starches

11、 (Mangifera in-dica L.). Food Chem 107, 9297. Wang SJ, Gao WY, Wei J, Xiao PG (2006). Crystallogra-phy, morphology and thermal properties of starches from four different medicinal plants of Fritillaria species. Food Chem 96, 591596. Wei CX, Xu B, Qin FL, Yu HG, Chen C, Meng XL, Zhu LJ, Wang YP, Gu M

12、H, Liu QQ (2010). C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem 58, 73837388. Yu JL, Wang SJ, Jin FM, Sun LY, Yu JG (2009). The structure of C-type rhizoma Dioscorea starch granule re-vealed by acid h

13、ydrolysis method. Food Chem 113, 585591. : x X L m 9 xZE) 285 Methods for Determining Relative Crystallinity of Plant Starch X-ray Powder Diffraction Spectra Bin Xu1, 2, Jianmin Man1, Cunxu Wei1* 1Key Laboratories of Plant Functional Genomics of Ministry of Education and Crop Genetics and Physiology

14、 of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2Testing Center, Yangzhou University, Yangzhou 225009, China Abstract Plant starches have A-, B-, and C-type crystallinity. We investigated spectrum characteristics of starches from rice, potato, pea and lotus by X-ray powder diffrac

15、tion (XRD). Peak-fitting, curved-line, straight-line mapping and curved-line mapping methods are commonly used for determining relative crystallinity of starch XRD spectra. The curved-line mapping method has reliable results. We found the relative crystallinity of rice starch negatively associated w

16、ith amylose content and that of acid-modified lotus starches positively associated with acid hydrolysis degree by the curved-line mapping method. The crystallinity of lotus starch changed from C- to A-type during acid hydrolysis. These results would be useful for XRD analysis of crystallinity and re

17、lative crystallinity of plant starches. Key words crystallinity, plant starch, X-ray powder diffraction Xu B, Man JM, Wei CX (2012). Methods for determining relative crystallinity of plant starch X-ray powder diffraction spectra. Chin Bull Bot 47, 278285. *Author for correspondence. E-mail: (3 I : )

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报