1、1. 电压、电流的参考方向,3. 基尔霍夫定律,重点:,第1章 电路元件和电路定律,(circuit elements),(circuit laws),2. 电路元件特性,1.2 电流和电压的参考方向(reference direction),电路中的主要物理量有电压、电流、电荷、磁链、能量、电功率等。在线性电路分析中人们主要关心的物理量是电流、电压和功率。,1. 电流的参考方向 (current reference direction),电流,电流强度,带电粒子有规则的定向运动,单位时间内通过导体横截面的电荷量,参考方向,i 参考方向,任意假定一个正电荷运动的方向即为电流的参考方向。,A,B
2、,i 参考方向,i 参考方向,i 0,i 0,实际方向,实际方向,电流的参考方向与实际方向的关系:,A,A,B,B,电流参考方向的两种表示:, 用箭头表示:箭头的指向为电流的参考方向。, 用双下标表示:如 iAB , 电流的参考方向由A指向B。,电压U,单位:V (伏)、kV、mV、V,2. 电压的参考方向 (voltage reference direction),单位正电荷q 从电路中一点移至另一点时电场力做功(W)的大小,电位,单位正电荷q 从电路中一点移至参考点(0)时电场力做功的大小,实际电压方向,电位真正降低的方向,问题,复杂电路或交变电路中,两点间电压的实际方向往往不易判别,给实
3、际电路问题的分析计算带来困难。,电压(降)的参考方向,假设的电压降低之方向,电压参考方向的三种表示方式:,(1) 用箭头表示,(2) 用正负极性表示,(3) 用双下标表示,U,U,+,UAB,元件或支路的u,i 采用相同的参考方向称之为关联参考 方向。反之,称为非关联参考方向。,关联参考方向,非关联参考方向,3. 关联参考方向,i,+,-,+,-,i,U,U,注,(1) 分析电路前必须选定电压和电流的参考方向。,(2) 参考方向一经选定,必须在图中相应位置标注 (包括方向和符号),在计算过程中不得任意改变。,(3)参考方向不同时,其表达式相差一负号,但实际方向不变。,i,例,U,电压电流参考方
4、向如图中所标,问:对A、B两部分电路电压电流参考方向关联否?,答: A 电压、电流参考方向非关联;B 电压、电流参考方向关联。,1.3 电路元件的功率 (power),1. 电功率,功率的单位:W (瓦) (Watt,瓦特),能量的单位: J (焦) (Joule,焦耳),单位时间内电场力所做的功。,2. 电路吸收或发出功率的判断,u, i 取关联参考方向,P=ui 表示元件吸收的功率,P0 吸收正功率 (实际吸收),P0 吸收负功率 (实际发出),p = ui 表示元件发出的功率,P0 发出正功率 (实际发出),P0 发出负功率 (实际吸收),u, i 取非关联参考方向,例,求图示电路中各方
5、框所代表的元件消耗或产生的功率。已知: U1=1V, U2= -3V, U3=8V, U4= -4V, U5=7V, U6= -3V I1=2A, I2=1A, I3= -1A,解,注,对一完整的电路,发出的功率消耗的功率,电容元件与电感元件的比较:,电容 C,电感 L,变量,电流 i 磁链 ,关系式,电压 u电荷 q,(1) 元件方程的形式是相似的;,(2) 若把 u-i,q- ,C-L, i-u互换,可由电容元件的方程得到电感元件的方程;,(3) C 和 L称为对偶元件, 、q等称为对偶元素。,* 显然,R、G也是一对对偶元素:,I=U/R U=I/G,U=RI I=GU,结论,1.7 电
6、源元件 (independent source),其两端电压总能保持定值或一定的时间函数,其 值与流过它的电流 i 无关的元件叫理想电压源。,电路符号,1. 理想电压源,定义,电压源的功率,电场力做功 , 电源吸收功率。,(1) 电压、电流的参考方向非关联;,物理意义:,电流(正电荷 )由低电位向 高电位移动,外力克服电场力作功电源发出功率。,发出功率,起电源作用,(2) 电压、电流的参考方向关联;,物理意义:,吸收功率,充当负载,或:,发出负功,例,计算图示电路各元件的功率。,解,发出,吸收,吸收,满足:P(发)P(吸),其输出电流总能保持定值或一定 的时间函数,其值与它的两端电压u 无关的
7、元件叫理想电流源。,电路符号,2. 理想电流源,定义,(1) 电流源的输出电流由电源本身决定,与外电路无关;与它两端电压方向、大小无关,电流源两端的电压由电源及外电路共同决定,理想电流源的电压、电流关系,伏安关系,电流源的功率,(1) 电压、电流的参考方向非关联;,发出功率,起电源作用,(2) 电压、电流的参考方向关联;,吸收功率,充当负载,或:,发出负功,例,计算图示电路各元件的功率。,解,发出,发出,满足:P(发)P(吸),1.8 受控电源 (非独立源) (controlled source or dependent source),电压或电流的大小和方向不是给定的时间函数,而是 受电路中
8、某个地方的电压(或电流)控制的电源,称受控源。,电路符号,受控电压源,1. 定义,受控电流源,3. 受控源与独立源的比较,(1) 独立源电压(或电流)由电源本身决定,与电路中其它电压、电流无关,而受控源电压(或电流)由控制量决定。,(2) 独立源在电路中起“激励”作用,在电路中产生电压、电流,而受控源只是反映输出端与输入端的受控关系,在电路中不能作为“激励”。,例,求:电压u2。,解,1.9 基尔霍夫定律 ( Kirchhoffs Laws ),基尔霍夫定律包括基尔霍夫电流定律 ( KCL )和基尔霍夫电压定律( KVL )。它反映了电路中所有支路电压和电流所遵循的基本规律,是分析集总参数电路
9、的基本定律。基尔霍夫定律与元件特性构成了电路分析的基础。,1. 几个名词,电路中通过同一电流的分支。(b),三条或三条以上支路的连接点称为节点。( n ),b=3,a,n=2,b,(1)支路 (branch),电路中每一个两端元件就叫一条支路,(2) 节点 (node),b=5,由支路组成的闭合路径。( l ),两节点间的一条通路。由支路构成。,对平面电路,其内部不含任何支路的回路称网孔。,l=3,3,(3) 路径(path),(4) 回路(loop),(5) 网孔(mesh),网孔是回路,但回路不一定是网孔,2. 基尔霍夫电流定律 (KCL),令流出为“+”,有:,例,在集总参数电路中,任意
10、时刻,对任意结点流出或流入该结点电流的代数和等于零。,流进的电流等于流出的电流,(2)选定回路绕行方向,顺时针或逆时针.,U1US1+U2+U3+U4+US4= 0,3. 基尔霍夫电压定律 (KVL),在集总参数电路中,任一时刻,沿任一闭合路径绕 行,各支路电压的代数和等于零。,(1)标定各元件电压参考方向,U2+U3+U4+US4=U1+US1,或:,R1I1+R2I2R3I3+R4I4=US1US4,例,KVL也适用于电路中任一假想的回路,明确,(1) KVL的实质反映了电路遵从能量守恒定律;,(2) KVL是对回路电压加的约束,与回路各支路上接的是什么元件无关,与电路是线性还是非线性无关;,(3)KVL方程是按电压参考方向列写,与电压实际方向无关。,4. KCL、KVL小结:,(1)KVL是关于电路中支路电压受到的约束;KCL则是关于电路中支路电流受到的约束。,(2) KCL、KVL与组成支路的元件性质及参数无关。,(3) KCL表明在每一节点上电荷是守恒的;KVL是能量守恒的具体体现(电压与路径无关)。,(4) KCL、KVL只适用于集总参数的电路。,