1、一元二次方程应用(4),几何与方程,一个两位数等于其各位数字之积的3倍,且其十位数字比个位数字小2,求这个两位数.,几何与方程,快乐学习 1,5,x,x,x,x,(82x),(52x),8,例1:一块四周镶有宽度相等的花边的镜框如下图,它的长为8cm,宽为5cm如果镜框中央长方形图案的面积为18cm2 ,则花边多宽?,解:设镜框的宽为xcm ,则镜框中央长方形图案的长为 cm,宽为 cm,得,(82x),(52x),m2,例3. 如图,在长为40米,宽为22米的矩形地面上,修筑两条同样宽的互相垂直的道路,余下的铺上草坪,要使草坪的面积为760平方米,道路的宽应为多少?,40米,22米,例2:某
2、校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少?使图(1),(2)的草坪面积为540米2.,补充例题与练习,解:(1)如图,设道路的宽为x米,则,化简得,,其中的 x=25超出了原矩形的宽,应舍去.,图(1)中道路的宽为1米.,则横向的路面面积为 ,,分析:此题的相等关系是矩形面积减去道路面积等于540米2。,解法一、 如图,设道路的宽为x米,,32x 米2,纵向的路面面积为 。,20x 米2,注意:这两个面积的重叠部分是 x2 米2,所
3、列的方程是不是,?,所以正确的方程是:,化简得,,其中的 x=50超出了原矩形的长和宽,应舍去. 取x=2时,道路总面积为:,=100 (米2),答:所求道路的宽为2米。,例2如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长。,答:截去正方形的边长为10厘米。,4如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_,练习:,例4 学校要建一个面积为150平方米的长方形自行车棚,为节约经费,一边利
4、用18米长的教学楼后墙,另三边利用总长为35米的铁围栏围成,求自行车棚的长和宽.,解:设与教学楼后墙垂直的一条边长为x米,则与教学 楼后墙平行的那条边长为 (352x)米,根据题意,得x(352x)150 解得 当 时,352x2018不合题意,舍去; 当x10时,352x15. 符合题意. 答:自行车棚的长和宽分别为15米和10米.,常见的图形有下列几种:,3. (2003年,舟山)如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃。设花圃的宽AB为x米,面积为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为45米2的花圃,AB的
5、长是多少米?,【解析】(1)设宽AB为x米, 则BC为(24-3x)米,这时面积 S=x(24-3x)=-3x2+24x (2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 024-3x10得14/3x8 x2不合题意,AB=5,即花圃的宽AB为5米,练习:,2.小明将勤工助学挣得的500元钱按一年定期存入银行,到期后取出50元用来购买学习用品 剩下的450元连同应得的税后利息又全部按一年定期存入银行如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少? (精确到0.01%) .,美满生活与方程,3.某果园有100棵桃树,一
6、棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量.试验发现,每多种一棵桃树,每棵棵桃树的产量就会减少2个.如果要使产量增加15.2%,那么应种多少棵桃树?,经济效益与方程,一元二次方程应用(5),销售问题,销售问题,1.某商场销售一批名牌衬衫,现在平均每天能售出20件,每件盈利40元.为了尽快减少库存,商场决定采取降价措施.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.商场要想平均每天盈利1200元,每件衬衫应降价多少元?,2.某商店从厂家以每件21元的价格购进一批商品,若每件商品售价为x元,则每天可卖出(350-10x)件,但物价局限定每件商品加价不能超过进价的2
7、0%.商店要想每天赚400元,需要卖出多少年来件商品?每件商品的售价应为多少元?,销售问题,一元二次方程应用,有关“动点”的面积问题,例1 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发,几秒后 PBQ的面积等于8cm2?,解:设x秒后 PBQ的面积等于8cm2 根据题意,得 整理,得 解这个方程,得,所以2秒或4秒后 PBQ的面积等于8cm2,例7 如图,在ABC中,C90, BC8 cm,AC6cm,点P从点C开始沿CB向点B以2 cm/s的速度移动,点Q
8、从点A开始沿AC边向点C以1cm/s的速度移动,如果P、Q分别从C、A同时出发,第几秒时PCQ的面积为5cm2?,经过1秒(5秒舍去),二 、有关“动点”的面积问题”,1)关键 以静代动把动的点进行转换,变为线段的长度,2)方法 时间变路程求“动点的运动时间”可以转化为求“动点的运动路程”,也是求线段的长度;,由此,学会把动点的问题转化为静点的问题, 是解这类问题的关键.,3)常找的数量关系面积,勾股定理,,例7:等腰直角 ABC中,AB=BC=8cm,动点P从A点出发,沿AB向B移动,通过点P引平行于BC,AC的直线与AC,BC分别交于R、Q.当AP等于多少厘米时,平行四边形PQCR的面积等
9、于16cm2?,练:如图,已知直线AC的解析式 ,点P从A点开始沿AO边向点O以1个单位/秒的速度移动,点Q从O点开始沿OC向点C以2个单位/秒的速度移动,如果P、Q两点分别从A、O同时出发,经几秒钟,能使PQO的面积为8个平方单位。,回味无穷,列方程解应用题的一般步骤是: 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; 3.列:列代数式,列方程; 4.解:解所列的方程; 5.验:是否是所列方程的根;是否符合题意; 6.答:答案也必需是完事的语句,注明单位且要贴近生活. 列方程解应用题的关键是: 找出相等关系. 关于两次平均增长(降低)率问题的一般关系: a(1x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数),运动与方程,