收藏 分享(赏)

基于Gardner位定时同步算法.doc

上传人:精品资料 文档编号:10000445 上传时间:2019-09-26 格式:DOC 页数:12 大小:1.09MB
下载 相关 举报
基于Gardner位定时同步算法.doc_第1页
第1页 / 共12页
基于Gardner位定时同步算法.doc_第2页
第2页 / 共12页
基于Gardner位定时同步算法.doc_第3页
第3页 / 共12页
基于Gardner位定时同步算法.doc_第4页
第4页 / 共12页
基于Gardner位定时同步算法.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、1.1 位同步算法在软件无线电接收机中,要正确的恢复出发送端所携带的信号,接收端必须知道每个码元的起止时刻,以便在每个码元的中间时刻进行周期性的采样判决恢复出二进制信号 43。信号在传播过程中的延时一般是未知的,而且由于传输过程中噪声、多径效应等影响,造成接收到的信号与本地时钟信号不同步,这就需要位同步算法,恢复出与接收码元同频同相的时钟信号。正确的同步时钟是接收端正确判断的基础,也是影响系统误码率的重要因素;没有准确的位同步算法,就不可能进行可靠的数据传输,位同步性能的好坏直接影响整个通信系统的性能 44。实现位同步算法的种类很多,按照处理方式的不同可分为模拟方式、半数字方式和全数字方式如图

2、 3-10 所示。模拟信号处理 数字信号处理模拟信号输入本地时钟数据输出采样器定时控制a)模拟信号处理 数字信号处理模拟信号输入本地时钟数据输出采样器定时控制b)模拟信号处理 数字信号处理模拟信号输入本地时钟数据输出采样器定时控制c)图 3-10 位同步算法模型Fig.3-10 Bit Synchronous Algorithm Model图 3-10(a)模型为全模拟位同步实现技术,通过在模拟域计算出输入信号的位同步定时控制信号去控制本地时钟,对信号进行同步采样。图 3-10(b)模型为半模拟同步模型,该模型的主要思想是通过将采样后的信号经过一系列的数字化处理,提取出输入信号与本地时钟的偏差

3、值,通过这个偏差来改变本地时钟的相位达到位同步。(a)(b)两种方式都需要适时改变本地时钟的相位,不利于高速数字信号的实现且集成化程度较低。图 3-10(c)为全数字方式的位同步是目前比较常用方法,全数字方式的位同步算法十分适用于软件无线电的实现。该方法通过一个固定的本地时钟对输入的模拟信号进行采样,将采样后的信号经过全数字化的处理实现同步;采用此种方法,实现简单,且便于数字化实现,对本地时钟的要求大大降低。本次设计主要分析了基于内插方式的 Gardner 定时恢复算法。1.1.1 Gardner 定时恢复算法原理Gardner 定时恢复算法是基于内插的位同步方式,全数字方式的位同步算法模型中

4、,固定的本地采样时钟不能保证能在信号的极值点处实现采样,所以需要通过改变重采样时钟或输入信号来实现极值处采样 45-46。Gardner 定时恢复算法就是通过改变输入信号的方式实现,利用内插滤波器恢复出信号的最大值再进行重采样,算法原理如图 3-11 所示。D / A模拟滤波器h ( t )输入信号x ( m Ts)模拟信号 y ( t )采样时 钟 Ti输出信号 y ( k Ti)图 3-11 Gardner 定时恢复算法原理Fig.3-11 Gardner Timing Recovery Theory输入信号为离散信号 x(mTs),采样率为 Ts,符号周期为 T,重采样时钟为Ti,这里的

5、重采样时钟周期 Ti=n*T(n 为一小整数) 。Gardner 定时恢复算法的基本思想就是,输入信号 x(mTs)经过一个 D/A 器件和一个模拟滤波器 h(t),将数字信号恢复为模拟信号 y(t)进行重采样,得到同步的输出信号 y(kTi)。插值滤波器模型中包含了虚拟的 D/A 变换和模拟滤波器,但是只要具备下面三个条件,则内插完全可以通过数字方式实现。 输入采样序列 x(mTs) 内插滤波器脉冲响应 h(t) 输入采样时间 Ts 和输出采样时间 Ti也就是说,图中的 D/A 以及模拟滤波器都可以通过设计数字内插滤波器的方式实现。这里 Ts和 Ti为固定的两个变量, Ts/Ti不一定为整数

6、,为表示出它们之间的变换过程,通过换算得到 Ti和 Ts的关系如公式 (3-4)所示(3-4)sksii umk)()mk为比值的整数部分,可看做一个基本指针,表示了本地重采样时钟 Ti对采样率为 Ts的输入信号的整数倍重采样时刻,而 uk为比值的分数部分,指示了滤波器对输入信号的插值时刻。一种典型的 Gardner 定时恢复算法结构框图如图 3-12 所示。插值滤波器定时误差检测器环路滤波器数控振荡器( N C O )输入信号x ( t )Ts 分数间隔计算mkukx ( m Ts) y ( k Ti) ( n ) e ( n )固定时钟定时输出 图 3-12 Gardner 定时恢复算法模

7、型Fig.3-12 Gardner Timing Recovery Model符号速率为 T 的模拟输入信号 x(t)经过本地固定时钟周期 Ts采样后变为离散信号 x(mTs)(T s与 T 满足奈奎斯特基本采样定律) 。经过插值滤波器得出的值送入定时误差检测器得出输入信号与本地时钟的相位误差 (n),再通过一个环路滤波器滤除其中的噪声及高频成分,将得到的值 e(n)送入数控振荡器计算出整数采样时刻 mk和插值滤波器插值点位置 uk从而得到定时输出 y(kTi)。从图 3-12 中可以看出一个完整的定时恢复算法主要由定时误差检测器、环路滤波器、数控振荡器和插值滤波器组成。其中环路滤波器与前一章

8、中载波同步算法的环路滤波器设计方法相同。这里主要介绍其他模块的设计方法。1.1.2 定时误差检测器定时误差检测器采用一种非数据辅助的误差检测算法(Gardner 定时误差检测算法) ,内插后的信号每个符号内需要两个重采样点,一个点对应信号的最佳采样点;另一个为最佳采样点中间时刻的内插值。定时误差计算公式为:(3-5)1()2/1() nyny式中,(n)为定时误差检测值;y(n) 为信号的采样值; n 为第 n 个符号,输出信号的周期为 Ti。由(3-5) 式可以看出,Gardner 算法只需要每个符号周期内的两个采样值,因此取 Ti=T/2 即可满足算法要求。定时误差检测算法示意图如图3-1

9、3 所示。采样点 y ( n - 1 )采样点 y ( n )中间采样点 y ( n - 1 / 2 )采样点 y ( n - 1 )采样点 y ( n )中间采样点 y ( n - 1 / 2 )采样点 y ( n - 1 )采样点 y ( n )中间采样点 y ( n - 1 / 2 )a )b )c )图 3-13 定时误差检测Fig.3-13 Timing Error Detecter该算法具有明显的物理含义。在没有定时误差时,如果有符号转换,则平均的中间采样点应该为零。反之,中间采样点的值不为零,其大小取决于定时误差的大小,或者说中间采样点的值表示了定时误差的大小,但它不能表示定时误

10、差的方向(超前或滞后) 。为了表示定时误差的方向,算法考虑中间采样点两边判决点的差值。如果有符号转换,则该差值的符号就表示了定时误差的方向。这样两者的乘积就完全确定了定时误差的大小和方向。如果没有符号转换,则两边采样点的差为零,此时不能获取定时信息。图 3-13(a)中表示了当本地采样时钟与插值滤波器输出值同步时,定时误差检测器的采样值;同步时,两个极值采样点均为最大值,中间采样点的值为 0,这时环路滤波器的输出值为 0表示本地时钟已经与信号同步。(b)图中,表示本地时钟超前的情况,本地时钟超前,则在中间采样点的值为正,表示本地时钟比信号超前,需要内插滤波器向后插值。(c)图中,表示本地时钟比

11、信号滞后,滞后的结果是中间时刻采样点的值为负,需要内插滤波器向前进行插值处理。1.1.3 NCO 模块设计对于数控振荡器 NCO 的设计,由于 NCO 只是用于计算插值点的有效位置,也就不需要采用在 ROM 表中预存输出波形的采样值。可以根据输入信号来实时产生输出信号脉冲和差值点。NCO 计算原理如下图所示)(kmskTsk)(11)(km)1(k10tNCO寄存器深度图 3-14 NCO 原理图Fig.3-14 NCO Schematic DiagramNCO 用于对以 Ts为采样时钟的输入信号进行抽样。因而 NCO 的工作时钟与输入信号的工作时钟一致也为 Ts,而生成的重采样周期应该与输入

12、信号的符号率同步为 Ti。每次 NCO 寄存器溢出一次则表示要执行一次重采样操作。每次NCO 寄存器过零点的时刻(m k+1)Ts便是内插滤波器进行一次运算的时刻(总是位于内插估计点位置的后一个 Ts整点采样时刻) 。 NCO 寄存器深度为 1,假设当前样点 mkTs时刻 NCO 寄存器的值为 (mk),环路滤波器输出的控制字为W(mk),表示每次递减的步进为 W(mk),用差分公式可表示为 mod(1(kkW当 (mk)W(mk)时,就表示下一个符号周期即将到来,NCO 也将产生一次过零点,寄存器的值模 1 后的值设为下一个符号周期 NCO 的初始值。从图 3-14 经过几何分析不难得出:

13、)1()(kkmu从而得到分数倍插值位置 uk为:)()(1(kkkk W通过精确的除法运算,就可以实时的得到分数间隔值 uk,这样,内插滤波器的控制参数也就通过 NCO 完全提取出来。1.1.4 插值滤波器设计Gardner 定时恢复算法中的插值滤波器主要作用就是通过输入信号 x(mTs)与采样点 mk与分数插值点 uk来实时生成与本地时钟相位相同的信号。插值滤波器输入信号 x(mTs)与输出信号 y(kTi)的关系可表示为:(3-6)()(21 skIIIi skski TuihimxTyT式中,I 1、 I2决定插值滤波器的抽头系数,h I为插值滤波器的冲激响应。mk、 uk由数控振荡器

14、 (NCO)提供,m k决定内插器的整数倍插值位置,它以重采样时钟触发方式体现。u k控制小数倍插值位置直接送给插值滤波器,控制插值点的位置。输出的定时恢复信号的性能主要与插值滤波器的设计方式有很大的关系,下面就来具体分析插值滤波器的实现方法。插值滤波器的实质是对信号经过低通滤波器后再重采样的过程。考虑理想插值情况,根据 Shannon 定理,采用理想插值可以由带限的输入信号 x(t)的抽样值 x(mTs)精确得到 x(t)在任意时刻的值,即(3-7)k ss TmtcTxt /)(in)()(其中(3-8)ssttc/i)/(in它的频域表达式为(3-9)sssTffH21,0)(因而,内插

15、后的序列 x(kTi)可表示为:(3-10)k sisi TmkcxT/)(n(由于理想的内插滤波器是非因果系统,它需要无穷多个信号样值点,物理上具有不可实现性。因而,将理想插值滤波器的脉冲响应进行截断,并根据最优化准则逼近最佳性能。内插滤波器可以通过不同的截断函数得出无穷多种内插函数,但都必须遵守线性相位的条件,即参与插值的采样点数为偶数。常用的内插滤波器包括:两点线性内插滤波器、立方内插滤波器、分段抛物线内插滤波器。这里主要讨论立方插值滤波器的原理和实现结构立方插值滤波器是多项式的插值滤波器的一种,它是基于 4 点样值的拉格朗日函数(3-11)2112)()(Nii ixCty这里 ,这里

16、 N=4,那么 N1=N/2=2,N2=N/2-1=-1 从而得出jijjNji tC21,立方插值滤波器的时域表达式为:(3-12) 其 他,0 2,16/)()/(6)/( 022,/)()/()/()2323 sssss ssss sTtTttTt ttttth归一化令 t=(i+u)Ts,则可得 h(t)的系数 Ci(u)为:(3-13);3126)2(1)(;)()( 66131 20 312 uuuCuuC对多项式滤波器的实现结构,可采用 Farrow 结构实现 47。该结构不必实时计算抽头系数,只需要根据当前时偏 u,经过如公式(3-13)的少量计算,就可以得到内插滤波器的系数实

17、现内插。表 3-2 给出了立方插值滤波器的系数表。DDksxmT iykT1 / 6- 1 / 21 / 2- 1 / 61 / 2- 1- 1 / 611 / 2图 3-15 立方插值滤波器 Farrow结构实现框图Fig.3-15 Cubic Interpolation Filter Farrow Realize Structure表 3-2 立方插值滤波器 Farrow结构实现系数Tab.4-1 Cubic Interpolation Filter Farrow Realize Structure Coefficienti l 0 1 2 3-2 0 -1/6 0 1/6-1 0 1 1

18、/2 -1/20 1 -1/2 -1 1/21 0 -1/3 -1/2 -1/6通过表 3-2 可以看出,Farrow 结构的插值滤波器实现,每计算一个内插值只需要传送一个变量,即内插估计点值 u,并通过简单的计算直接求出内插点的值,而不需要计算中间滤波器的系数(系数为固定值)。图 3-15 给出了立方插值滤波器的 Farrow 结构实现框图。1.1.5 Simulink 算法仿真及性能分析经过以上分析,在 matlab 中构建了一个 BPSK 信号的定时恢复模型,符号速率为 2MHz,固定采样时钟为 20MHz,插值滤波器采用线性插值算法,系统中加入的信噪比为 30dB,0.0001 的环路

19、滤波器等效噪声带宽。得到 Gardner 定时恢复算法的 Simulink 仿真图如图 3-16 所示。图 3-16 Gardner 定时恢复算法 Simulink仿真模型Fig.3-16 Gardner Timing Recovery Simulink Simulation Model图中 In2 为信号输入,经过插值滤波器模块后,用原始的 NCO 生成的本地时钟进行采样和定时误差提取,再将误差值通过 LF(环路滤波器模块)后,计算出小数插值点 uk的值反馈回去控制插值滤波的小数插值点,改变输出信号的相位从而使经过插值滤波器后的输入信号的相位与本地时钟的相位相一致,达到同步的目的。图 3-1

20、7 同步前信号的星座图 图 3-18 同步后信号的星座图Fig.3-17 Planisphere Before Synchronization Fig.3-18 Planisphere After Synchronization图 3-19 定时恢复算法仿真结果Fig.3-19 Timing Recovery Simulation Result以一个 BPSK 信号为信号源,图 3-17 中显示了信号在未同步时信号的星座图,从图中可以看出未同步经过采样后的星座图左右来回摆动。而经过位同步后的星座图如图 3-18 所示,图中采样出的两个点为两个稳定在0.6 的两个点,这表示经过同步后的采样信号已

21、经能够在极大极小值处实现采样。位同步采样信号波形如图 3-19 所示,图中第一个波形为 NCO 生成的同步时钟,第二个波形为需要同步的 BPSK 信号,从第三个波形中可以看出,同步时钟对信号的采样值均能在极值点处实现采样,再经过一个简单的判决处理即可恢复出原始的二进制信号。下面观察 Gardner 定时恢复算法中插值滤波器插值位置 uk的变化情况,它直接反应了整个系统的同步情况。由于 uk为 Ti/Ts的小数部分,而 Ts/Ti 有多种情况 当 Ti与 Ts的比值为整数时,小数偏差 uk收敛为稳定的常数,如图 3-20(a)所示。 当 Ti与 Ts的比值不成比例,且为一有理数时,小数偏差 uk

22、是周期性变化的,如图 3-20(b)所示。 当 Ti与 Ts的比值不成比例,却为一无理数时,小数偏差 uk为非周期性变换的波形,如图 3-20(c)所示。a) b) c)图 3-20 uk输出波形Fig.3-20 uk Output Waveform位同步算法的性能评价标准与载波同步的性能评价标准基本相同,分为相位误差、同步建立时间、同步保持时间以及同步带宽。这里的相位误差主要是指由于输入信号的相位与本地时钟的相位不同,所以需要调整本地时钟的相位来达到与输入信号相位相一致的目的,从而实现同步。不同的位同步算法的相位误差误差各不相同。1.1.6 减小定时抖动的方法Gardner 定时恢算法在实现

23、位同步后,小数插值点 uk将稳定于一个固定的波形上。实际的信号在加性高斯白噪声信道(AWGN)中传输,受信道噪声的影响,u k将沿着固定波形上下随机变化,这个变化一般被称为定时恢复环路的定时抖动。若单靠环路滤波器滤除带外噪声来减少定时抖动,要求环路滤波器的等效噪声带宽减小,使环路的捕获时间将相应的增加 48-51。如何在不改变环路滤波器等效噪声的情况下,减小定时抖动是本文所要讨论的主要问题。定时抖动主要是因为输入信号中叠加有噪声,如果能在环路中通过乘以一个很小的环路系数( 小于 1),其他参数不变,只改变环路中的噪声系数,那么就可以减小定时抖动。从而,在相同的环路滤波器等效噪声带宽的条件下,减

24、小了环路的定时抖动。在定时恢复环路中,通过 NCO 中输入频率控制字的倒数 与当前相位累加器的值 (mk)计算出小数插值点 uk的输出计算式(3-14)(km存在噪声的情况下 =+no,其中 oTi/Ts表示存储于 NCO 内部的频率控制字初始值的倒数, 为经环路滤波器后的误差输出值, no 为 NCO 的输入噪声,实现定时恢复后 =0,则 =+no 将 带入(3-14) 式有(3-15)()()(00 kokkk mnu式中, o(mk)是无噪声情况下 uk的值 no(mk)为噪声项,也即引起定时抖动的原因。如果能在不改变 o(mk)的情况下,改变 o(mk)的大小,就可以减小 uk的定时抖

25、动。然而若减小 (mk)的值,则也会 o(mk)相应的改变,这将影响定时恢复,所以只有减小 no的值才能在不影响定时恢复的条件下减小定时抖动,如何在固定的输入信噪比条件下减小 NCO 的输入噪声是较小定时抖动的关键。根据数控振荡器(NCO)中的小数间隔 uk与 NCO 相位累加器的几何关系(3-16)(1)(1ksksmTu式中,(m k+1)示下一个时刻 NCO 相位累加器的值,将公式(3-15)带入公式(3-16)并化简可推导出 NCO 相位累加器值的计算式(3-17)okk n01)(由式(3-17)可以看出,NCO 相位累加器的值是一个通过迭代算法计算出来的,根据迭代算法传递函数的计算

26、方法可以得出第 mk时刻相位累加值,即当前通过过零点产生 uk时刻相位累加器的值为(3-18)kmok n)1()0(0)为相位累加器初始时刻的值,由公式(3-18) 可知,无噪声的情况下,(mk)的值只与初始时刻相位累加器的值与累加的次数有关。再将公式(3-18)带入公式(3-15)可以得出 uk(3-19) kk mooomoook nnnu )1()0()1()0( 通过对公式(3-19)进行分析可知,u k输出值的大小与 NCO 中相位累加器的初始值 (0)、频率控制字的倒数 o、迭代次数 mk以及输入噪声大小有关。当输入信号的符号速率 T 与本地时钟周期 Ts确定后, o为定值,(0

27、)是 NCO 初始化的值也为定值。因而,要减小输出 uk的定时抖动,可以想到通过减小输入 NCO中噪声 no的幅值来实现。根据 Gardner 定时恢复算法的原理框图知道,Gardner 定时误差检测后的信号经过环路滤波器输入 NCO 调整 mk、 uk的值,实现定时恢复。无噪声条件下的符号同步后的定时误差检测器输出为 0,环路滤波器输出也相应为 0;存在噪声时,环路滤波器的输出则为噪声信号,也即是引起定时抖动的来源。如果我们能在环路滤波器输出后,NCO 输入前加入一个小于 1 的环路系数。那么,将环路滤波器的输出与之相乘,输入 NCO 中的噪声将会成倍的减小。从而达到减小定时抖动的目的。首先

28、分析环路系数对 uk的方差即定时抖动大小和实现定时恢复所需要的点数的影响。如图 3-21 所示,由图中可以看出 uk的定时抖动随着环路系数的增加而逐渐增大,但系统定时恢复点数却随着系数的增大逐渐减小。综合定时抖动与定时恢复两个方面可以得出当环路系数在 0.10.3 之间时,定时抖动与定时恢复点数都能取到一个相应较小的值。0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.010.020.030.040.050.060.070.080.09信信信信Uk信信信010002000300040005000600070008000信信信信信信信信信信信信Uk信信信图 3-21

29、环路系数与 uk方差和定时恢复点数关系图Fig.3-21 The Relationship Between Loop Coefficient and uk Variance因而,环路系数的选择并不是越小越好,由于在定时恢复阶段,环路滤波器输出的误差信号也与之相乘,将会影响 NCO 中 mk、 uk的调整速度,影响整个定时恢复的速度。之后的仿真分析中选择添加 0.1 的环路系数。图 3-22、图3-23 比较了没有添加环路系数和添加 0.1 的环路系数后环路滤波器的输出和 uk的输出波形的收敛情况。0 5 10 15x 10500.10.20.30.40.50.60.70.80.910 5 10

30、 15x 10500.10.20.30.40.50.60.70.80.91图 3-22 未添加系数时 uk输出波形 图 3-23 添加 0.1系数时 uk输出波形Fig.3-22 uk Output Wave Without CoefficientFig.3-23 uk Output Wave With Coefficient在未添加环路系数和添加 0.1 的环路系数后,u k的输出波形收敛范围明显减小。图 3-22 中 uk输出波形的相位抖动较大范围在 0.2 左右。而图 3-23 中所示为加了环路幅度增益控制后,u k输出波形的相位抖动范围有明显减小,抖动范围小于 0.1。说明在不改变环路

31、滤波器等效噪声带宽的条件下,通过增加环路系数也可以达到减小定时抖动的效果。为了进一步讨论环路增益控制单元对减小定时抖动的定量关系。针对此定时恢复环路,采用蒙特卡罗法分析了在有无环路系数这两种情况中,仿真了输入信噪比对系统误码率和 uk方差的影响,如图 3-24、图 3-25 所示。0 2 4 6 8 10 12 14 16 18 2010-0.810-0.710-0.610-0.510-0.4Eb/N0 (dB)BER信信信信信信信信信0.1信信信信信0 2 4 6 8 10 12 14 16 18 2000.010.020.030.040.050.060.070.080.09Uk信信信信信信

32、信信信dB信 信信信信信信信信信0.1信信信信信图 3-24 误码率与输入信噪比关系 图 3-25 uk的方差与输出信噪比的关系Fig.3-24 The Bit Error Rate and Input SNR Relationshap Fig.3-25 uk Variance and Output SNR Relationship未添加环路系数和添加 0.1 的环路系数后,系统的误码率有明显的减小。随着输入信噪比的增加,误码率均有减小的趋势,但未添加增益的减小速度小于添加 0.1 的环路系数时的速度。图 3-25 显示了 uk的方差与输出信噪比的关系,通过对 uk方差的分析,可准确的反应此时 uk定时抖动的大小。在信噪比为 0dB时,添加和未添加系数的 uk的抖动差异不大,但当信噪比增加,未添加环路系数的 uk抖动变化不大,而添加环路系数的 uk抖动呈线性减小,虽随着信噪比的增大有缓和的趋势,但总体上都远远小于未添加时的定时抖动。但这样一来同步的建立时间将会延长,所以,同步的建立时间与定时误差是两个矛盾的方面。若想要减小同步建立时间,就必须使环路滤波器的噪声带宽增大,而环路滤波器噪声带宽增加将会使定时抖动增加。而若要减小定时抖动,则噪声带宽减小,将会增加同步建立时间。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报