ImageVerifierCode 换一换
格式:PPT , 页数:11 ,大小:248KB ,
资源ID:9935610      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-9935610.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(等比数列的前n项和复习_课件.ppt)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

等比数列的前n项和复习_课件.ppt

1、2.5 等比数列的前n项和,第三课时,1.等差数列的前n项和公式是什么?,2.等比数列的前n项和公式是什么?,当q1时,Snna1;,当q1时,问题提出,3.对于等差、等比数列的求和问题,可直接套公式求解,对于某些非等差、等比数列的求和问题,我们希望有一些求和的方法,这又是一个需要探究的课题.,特殊数列的求和,知识探究(一):特殊数列的求和方法,思考2:上述求和方法叫做分组求和法,一般地,什么类型的数列可用分组求和法求和?,思考1:如何求数列 的各项之和?其和为多少?,由几个等差、等比数列合成的数列.,思考3:如何求数列 的各项之和?其和为多少?,思考4:上述求和方法叫做裂项求和法,一般地,什

2、么类型的数列可用裂项求和法求和?,每一项都能拆分为两项的差,累加后能抵消若干项.,思考5:如何求数列2,4a,6a2,2nan1(a0) 的各项之和?其和为多少?,思考6:上述求和方法叫做错位相减法,一般地,什么类型的数列可用错位相减法求和?,由一个等差数列与一个等比数列对应项的乘积组成的数列.,当a1时,,当a1时,,知识探究(二):特殊数列的求和技巧,思考2:如何求数列12,22,32,n2的各项之和?其和为多少?,思考1:如何求数列4,44,444, 的各项之和?其和为多少?,例1 求数列 的各项之和.,首项为,理论迁移,例2 求数列1,3,5,7, (1)n(2n1) 的各项之和.,(1)nn,小结作业,1.特殊数列的求和问题是建立在等差、等比数列的基础之上,各有特定的方法和技巧,其中分组求和,裂项求和,错位相减是常用方法,要求理解和掌握.,2.求特殊数列的和一般先要分析其通项公式,再根据数列的特点选择适当的方法或技巧求解,同时要注意数列共有多少项.,作业: P61习题2.5A组:4,5.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报