ImageVerifierCode 换一换
格式:PPT , 页数:22 ,大小:3.02MB ,
资源ID:965207      下载积分:15 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-965207.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版数学3.2.3 立体几何中的向量方法 课件2.ppt)为本站会员(book1813)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

人教A版数学3.2.3 立体几何中的向量方法 课件2.ppt

1、第三章 空间向量与立体几何,3.2 立体几何中的向量方法(三),一、复习引入,用空间向量解决立体几何问题的“三步曲”。,(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;,(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;,(3)把向量的运算结果“翻译”成相应的几何意义。,(化为向量问题),(进行向量运算),(回到图形),向量的有关知识:,两向量数量积的定义:ab=|a|b|cosa,b,两向量夹角公式:cos a,b =,直线的方向向量:与直线平行的非零向量,平面的法向量:与平面垂直的向量,练习 如图,

2、60的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB4,AC6,BD8,求CD的长.,例1:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线 (库底与水坝的交线)的距离AC和BD分别为 和 ,CD的长为 , AB的长为 。求库底与水坝所成二面角的余弦值。,解:如图,,化为向量问题,根据向量的加法法则,进行向量运算,于是,得,设向量 与 的夹角为 , 就是库底与水坝所成的二面角。,因此,所以,回到图形问题,库底与水坝所成二面角的余弦值为,例1:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线 (库

3、底与水坝的交线)的距离AC和BD分别为 和 ,CD的长为 , AB的长为 。求库底与水坝所成二面角的余弦值。,思考:,(1)本题中如果夹角 可以测出,而AB未知,其他条件不变,可以计算出AB的长吗?,分析:, 可算出 AB 的长。,(2)如果已知一个四棱柱的各棱长和一条对角线的长,并且以同一顶点为端点的各棱间的夹角都相等,那么可以确定各棱之间夹角的余弦值吗?,分析:如图,设以顶点 为端点的对角线长为 ,三条棱长分别为 各棱间夹角为 。,(3)如果已知一个四棱柱的各棱长都等于 ,并且以某一顶点为端点的各棱间的夹角都等于 ,那么可以确定这个四棱柱相邻两个夹角的余弦值吗?,A1,B1,C1,D1,A

4、,B,C,D,分析:,二面角,平面角,向量的夹角,回归图形,解:如图,在平面 AB1 内过 A1 作 A1EAB 于点 E,,E,F,在平面 AC 内作 CFAB 于 F。,可以确定这个四棱柱相邻两个夹角的余弦值。,空间“夹角”问题,1.异面直线所成角,l,m,l,m,若两直线 所成的角为 , 则,例2,解:以点C为坐标原点建立空间直角坐标系 如图所示,设 则:,所以:,所以 与 所成角的余弦值为,练习:,在长方体 中,,二面角的平面角,方向向量法 将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。如图,设二面角 的大小为其中AB,D,C,L,B,A,注意法向量

5、的方向:同进同出,二面角等于法向量夹角的补角;一进一出,二面角等于法向量夹角,将二面角转化为二面角的两个面的法向量的夹角。如图,向量 ,则二面角 的大小 ,若二面角 的大小为 , 则,法向量法,二面角的平面角,例2 正三棱柱 中,D是AC的中点,当 时,求二面角 的余弦值。,故,则可设 =1, ,则B(0,1,0),作 于E, 于F,则 即为二面角 的大小,在 中, 即E分有向线段 的比为,由于 且 ,所以,在 中,同理可求,即二面角 的余弦值为,解法二:同法一,以C为原点建立空间直角坐标系 C-xyz,在坐标平面yoz中,设面 的一个法向量为,同法一,可求 B(0,1,0),由 得,解得,所以,可取,即二面角 的余弦值为,方向朝面外, 方向朝面内,属于“一进一出”的情况,二面角等于法向量夹角,2. 线面角,2. 线面角,l,设直线l的方向向量为 ,平面 的法向量为 ,且直线 与平面 所成的角为 ( ),则,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报