1、 On Aerial Navigation BY SIR GEORGE CAYLEY, BART. BROMPTON, Sept. 6, 1809. (Reprinted from Nicholsons Journal, November, 1809.) SIR, I observed in your Journal for last month, that a watchmaker at Vienna, of the name of Degen, has succeeded in raising himself in the air by mechanical means1. I waite
2、d to receive your present number, in expectation of seeing some farther account of this experiment, before I commenced transcribing the following essay upon aerial navigation, from a number of memoranda which I have made at various times upon this subject. I am induced to request your publication of
3、 this essay, because I conceive, that, in stating the fundamental principles of this art, together with a considerable number of facts and practical observations, that have arisen in the course of much attention to this subject, I may be expediting the attainment of an object, that will in time be f
4、ound of great importance to mankind; so much so, that a new aera in society will commence, from the moment that aerial navigation is familiarly realized. It appears to me, and I am more confirmed by the success of the ingenious Mr. Degen, that nothing more is necessary, in order to bring the followi
5、ng principles into common practical use, than the endeavours of skilful artificers, who may vary the means of execution, till those most convenient are attained. Since the days of Bishop Wilkins the scheme of flying by artificial wings has been much ridiculed; and indeed the idea of attaching wings
6、to the arms of a man is ridiculous enough, as the pectoral muscles of a bird occupy more than two-thirds of its whole muscular strength, whereas in man the muscles, that could operate upon wings thus attached, would probably not exceed one-tenth of his whole mass. There is no proof that, weight for
7、weight, a man is comparatively weaker than a bird; it is therefore probable, if he can be made to exert his whole strength advantageously upon a light surface similarly proportioned to his weight as that of the wing to the bird, that he would fly like the bird, and the ascent of Mr. Degen is a suffi
8、cient proof of the truth of this statement. The flight of a strong man by great muscular exertion, though a curious and interesting circumstance, in as much as it will probably be the first means of ascertaining this power, and supplying the basis whereon to improve it, would be of little use. I fee
9、l perfectly confident, however, that this noble art will soon be brought home to mans general convenience, and that we shall be able to transport ourselves and families, and their goods and chattels, more securely by air than by water, and with a velocity of from 20 to 100 miles per hour. To produce
10、 this effect, it is only necessary to have a first mover, which will generate more power in a given time, in proportion to its weight, than the animal system of muscles. The consumption of coal in a Boulton and Watts steam engine is only about 5 1/2 lbs. per hour for the power of one horse. The heat
11、 produced by the combustion of this portion of inflammable matter is the sole cause of the power generated; but it is applied through the intervention of a weight of water expanded into steam, and a still greater weight of cold water to condense it again. The engine itself likewise must be massy eno
12、ugh to resist the whole external pressure of the atmosphere, and therefore is not applicable to the purpose proposed. Steam engines have lately been made to operate by expansion only, and those might be constructed so as to be light enough for this purpose, provided the usual plan of a large boiler
13、be given up, and the principle of injecting a proper charge of water into a mass of tubes, forming the cavity for the fire, be adopted in lieu of it. The strength of vessels to resist internal pressure being inversely as their diameters, very slight metallic tubes would be abundantly strong, whereas
14、 a large boiler must be of great substance to resist a strong pressure. The following estimate will show the probable weight of such an engine with its charge for one hour. lb.The engine itself from 90 to 100 Weight of inflamed cinders in a cavity presenting about 4 feet surface of tube 25 Supply of
15、 coal for one hour 6 Water for ditto, allowing steam of one atmosphere to be 1/1800 the specific gravity of water 32 I do not propose this statement in any other light than as a rude approximation to truth, for as the steam is operating under the disadvantage of atmospheric pressure, it must be rais
16、ed to a higher temperature than in Messrs. Boulton and Watts engine; and this will require more fuel; but if it take twice as much, still the engine would be sufficiently light, for it would be exerting a force equal to raising 550 lb. one foot high per second, which is equivalent to the labour of s
17、ix men, whereas the whole weight does not much exceed that of one man. It may seem superfluous to inquire farther relative to first movers for aerial navigation; but lightness is of so much value in this instance, that it is proper to notice the probability that exists of using the expansion of air
18、by the sudden combustion of inflammable powders or fluids with great advantage. The French have lately shown the great power produced by igniting inflammable powders in close vessels; and several years ago an engine was made to work in this country in a similar manner, by the inflammation of spirit
19、of tar. I am not acquainted with the name of the person who invented and obtained a patent for this engine, but from some minutes with which I was favoured by Mr. William Chapman, civil engineer in Newcastle, I find that 80 drops of the oil of tar raised eight hundred weight to the height of 22 inch
20、es; hence a one horse power many consume from 10 to 12 pounds per hour, and the engine itself need not exceed 50 pounds weight. I am informed by Mr. Chapman, that this engine was exhibited in a working state to Mr. Rennie, Mr. Edmund Cartwright, and several other gentlemen, capable of appreciating i
21、ts powers; but that it was given up in consequence of the expense attending its consumption being about eight times greater than that of a steam engine of the same force. Probably a much cheaper engine of this sort might be produced by a gas-light apparatus, and by firing the inflammable air generat
22、ed, with a due portion of common air, under a piston. Upon some of these principles it is perfectly clear, that force can be obtained by a much lighter apparatus than the muscles of animals or birds, and therefore in such proportion may aerial vehicles be loaded with inactive matter. Even the expans
23、ion steam engine doing the work of six men, and only weighing equal to one, will as readily raise five men into the air, as Mr. Degen can elevate himself by his own exertions; but by increasing the magnitude of the engine, 10, 50, or 500 men may equally well be conveyed; and convenience alone, regul
24、ated by the strength and size of materials, will point out the limit for the size of vessels in aerial navigation. Having rendered the accomplishment of this object probable upon the general view of the subject, I shall proceed to point out the principles of the art itself. For the sake of perspicui
25、ty I shall, in the first instance, analyze the most simple action of the wing in birds, although it necessarily supposes many previous steps. When large birds, that have a considerable extent of wing compared with their weight, have acquired their full velocity, it may frequently be observed, that t
26、hey extend their wings, and without waving them, continue to skim for some time in a horizontal path. Fig. I, in the Plate, represents a bird in this act. Let a b be a section of the plane of both wings opposing the horizontal current of the air (created by its own motion) which may be represented b
27、y the line c d, and is the measure of the velocity of the bird. The angle b d c can be increased at the will of the bird, and to preserve a perfectly horizontal path, without the wing being waved, must continually be increased in a complete ratio, (useless at present to enter into) till the motion i
28、s stopped altogether; but at one given time the position of the wings may be truly represented by the angle b d c. Draw d e perpendicular to the plane of the wings, produce the line e d as far as required, and from the point e, assumed at pleasure in the line d e, let fall e f perpendicular to d f.
29、Then d e will represent the whole force of the air under the wing; which being resolved into the two forces e f and f d, the former represents the force that sustains the weight of the bird, the latter the retarding force by which the velocity of the motion, producing the current c d, will continual
30、ly be diminished. e f is always a known quantity, being equal to the weight of the bird, and hence f d is also known, as it will always bear the same proportion to the weight of the bird, as the sine of the angle b d e bears to its cosine, the angles d e f, and b d c, being equal. In addition to the
31、 retarding force thus received is the direct resistance, which the bulk of the bird opposes to the current. This is a matter to be entered into separately from the principle now under consideration; and for the present may be wholly neglected, under the supposition of its being balanced by a force p
32、recisely equal and opposite to itself. Before it is possible to apply this basis of the principle of flying in birds to the purposes of aerial navigation, it will be necessary to encumber it with a few practical observations. The whole problem is confined within these limits, viz. To make a surface
33、support a given weight by the application of power to the resistance of air. Magnitude is the first question respecting the surface. Many experiments have been made upon the direct resistance of air, by Mr. Robins, Mr. Rouse, Mr. Edgeworth, Mr. Smeaton, and others. The result of Mr. Smeatons experim
34、ents and observations was, that a surface of a square foot met with a resistance of one pound, when it travelled perpendicularly to itself through air at a velocity of 21 feet per second. I have tried many experiments upon a large scale to ascertain this point. The instrument was similar to that use
35、d by Mr. Robins, but the surface used was larger, being an exact square foot, moving round upon an arm about five feet long, and turned by weights over a pulley. The time was measured by a stop watch, and the distance travelled over in each experiment was 600 feet. I shall for the present only give
36、the result of many carefully repeated experiments, which is, that a velocity of 11.538 feet per second generated a resistance of 4 ounces; and that a velocity of 17.16 feet per second gave 8 ounces resistance. This delicate instrument would have been strained by the additional weight necessary to ha
37、ve tried the velocity generating a pressure of one pound per square foot; but if the resistance be taken to vary as the square of the velocity, the former will give the velocity necessary for this purpose at 23.1 feet, the latter 24.28 per second. I shall therefore take 23.6 feet as somewhat approac
38、hing the truth. Having ascertained this point, had our tables of angular resistance been complete, the size of the surface necessary for any given weight would easily have been determined. Theory, which gives the resistance of a surface opposed to the same current in different angles, to be as the s
39、quares of the sine of the angle of incidence, is of no use in this case; as it appears from the experiments of the French Academy, that in acute angles, the resistance varies much more nearly in the direct ratio of the sines, than as the squares of the sines of the angles of incidence. The flight of
40、 birds will prove to an attentive observer, that, with a concave wing apparently parallel to the horizontal path of the bird, the same support, and of course resistance, is obtained. And hence I am inclined to suspect, that, under extremely acute angles, with concave surfaces, the resistance is near
41、ly similar in them all. I conceive the operation may be of a different nature from what takes place in larger angles, and may partake more of the principle of pressure exhibited in the instrument known by the name of the hydrostatic paradox, a slender filament of the current is constantly received u
42、nder the anterior edge of the surface, and directed upward into the cavity, by the filament above it, in being obliged to mount along the convexity of the surface, having created a slight vacuity immediately behind the point of separation. The fluid accumulated thus within the cavity has to make its
43、 escape at the posterior edge of the surface, where it is directed considerably downward; and therefore has to overcome and displace a portion of the direct current passing with its full velocity immediately below it; hence whatever elasticity this effort requires operates upon the whole concavity o
44、f the surface, excepting a small portion of the anterior edge. This may or may not be the true theory, but it appears to me to be the most probable account of a phenomenon, which the flight of birds proves to exist. Six degrees was the most acute angle, the resistance of which was determined by the
45、valuable experiments of the French Academy; and it gave 4/10 of the resistance, which the same surface would have received from the same current when perpendicular to itself. Hence then a superficial foot, forming an angle of six degrees with the horizon, would, if carried forward horizontally (as a
46、 bird in the act of skimming) with a velocity of 23.6 feet per second, receive a pressure of 4/10 of a pound perpendicular to itself. And, if we allow the resistance to increase as the square of the velocity, at 27.3 feet per second it would receive a pressure of one pound. I have weighed and measur
47、ed the surface of a great many birds, but at present shall select the common rook (corvus frugilegus) because its surface and weight are as nearly as possible in the ratio of a superficial foot to a pound. The flight of this bird, during any part of which they can skim at pleasure, is (from an avera
48、ge of many observations) about 34.5 feet per second. The concavity of the wing may account for the greater resistance here received, than the experiments upon plain surfaces would indicate. I am convinced, that the angle made use of in the crows wing is much more acute than six degrees; but in the o
49、bservations, that will be grounded upon these data, I may safely state, that every foot of such curved surface, as will be used in aerial navigation, will receive a resistance of one pound, perpendicular to itself, when carried through the air in an angle of six degrees with the line of its path, at a velocity of about 34 or 35 feet per second. Let a b, fig. 2, represent such a surface or sail made of thin cloth, and containing about 200 square feet (if of a square form the side will be a little more than 14 feet); and the whole of a firm texture. Let the weight of the man and the machin