ImageVerifierCode 换一换
格式:PDF , 页数:27 ,大小:214.99KB ,
资源ID:9241563      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-9241563.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(隶属函数在MATLAB中应用.pdf)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

隶属函数在MATLAB中应用.pdf

1、 6c 201 6c 6.1 f 6.1.1 f f gaussmf T y=gaussmf(x,sig c) f Vr T222)cx(e)c,;x(f= c, x 1M sig Vr T b 6-1 x=0:0.1:10; y=gaussmf(x,2 5); plot(x,y) xlabel(gaussmf, P=2 5) Tm 6-1b 0 2 4 6 8 1000.20.40.60.81gaussmf, P=2 5m 6-1 6.1.2 H f f gauss2mf T y = gauss2mf(x,sig1 c1 sig2 c2) sig1ac1asig2ac2 7 1 Vr T 6

2、-2 x = (0:0.1:10); y1 = gauss2mf(x, 2 4 1 8); y2 = gauss2mf(x, 2 5 1 7); y3 = gauss2mf(x, 2 6 1 6); y4 = gauss2mf(x, 2 7 1 5); y5 = gauss2mf(x, 2 8 1 4); MATLAB6.0 m 202 plot(x, y1 y2 y3 y4 y5); set(gcf, name, gauss2mf, numbertitle, off); Tm 6-2b 6.1.3 y B f f gbellmf T y = gbellmf(x,params) B f G L

3、f Vr Tb2|acx|11)c,b,a;x(f+= xM lS bY c wL= M params BsY a b c_ b 6-3 x=0:0.1:10; y=gbellmf(x,2 4 6); plot(x,y) xlabel(gbellmf, P=2 4 6) Tm 6-3b 0 2 4 6 8 1000.20.40.60.810 2 4 6 8 1000.20.40.60.81gbellmf, P=2 4 6m 6-2 m 6-3 6.1.4 sigmoid f F f f dsigmf T y = dsigmf(x,a1 c1 a2 c2) sigmoid f / T)cx(ae

4、11)c,a;x(f+= x M a,c b dsigmf P a1 c1 a2 c2i O sigmoid f )c,a;x(f)c,a;x(f222111 caca2211b 6-4 x=0:0.1:10; y=dsigmf(x,5 2 5 7); plot(x,y) Tm 6-4 6c 203 0 2 4 6 8 1000.20.40.60.81m 6-4 6.1.5 Y f 9 f evalmf T y = evalmf(x, mfParams, mfType) evalmf V9 i f x M l mfType Q4B f mfParams N f M T FX7y1l f eva

5、lmf VTy V9 3 i f b 6-5 x=0:0.1:10; mfparams = 2 4 6; mftype = gbellmf; y=evalmf(x,mfparams,mftype); plot(x,y) xlabel(gbellmf, P=2 4 6) Tm 6-5b 0 2 4 6 8 1000.20.40.60.81gbellmf, P=2 4 6m 6-5 6.1.6 y j f f primf T y = pimf(x,a b c d) _ x f 1M lf _ x )9 a,b,c,d % f a dsY wL/P . b csY wLP .b 6-6 MATLAB

6、6.0 m 204 x=0:0.1:10; y=pimf(x,1 4 5 10); plot(x,y) xlabel(pimf, P=1 4 5 10) Tm 6-6b 6.1.7 YV sigmoid f / f f psigmf T y = psigmf(x,a1 c1 a2 c2) sigmoid f / T)cx(ae11)c,a;x(f+= x M a,c b psigmf P a1 c1 a2 c2i O sigmoid f )c,a;x(f)c,a;x(f222111 caca2211b 6-7 x=0:0.1:10; y=psigmf(x,2 3 -5 8); plot(x,y

7、) xlabel(psigmf, P=2 3 -5 8) Tm 6-7b 0 2 4 6 8 1000.20.40.60.81pimf, P=1 4 5 100 2 4 6 8 1000.20.40.60.81psigmf, P=2 3 -5 8m 6-6 m 6-7 6.1.8 y Sigmoid f f sigmf T y = sigmf(x,a c) )cx(ae11)c,a;x(f+= l_ x a c b 6-8 x=0:0.1:10; y=sigmf(x,2 4); plot(x,y) xlabel(sigmf, P=2 4) Tm 6-8b 6c 205 0 1 2 3 4 5

8、6 7 8 9 1000.10.20.30.40.50.60.70.80.91sigmf, P=2 4m 6-8 6-9 x = (0:0.2:10); y1= sigmf(x,-1 5); y2= sigmf(x,-3 5); y3= sigmf(x,4 5); y4= sigmf(x,8 5); subplot(2,1,1),plot(x,y1 y2 y3 y4); y1= sigmf(x,5 2); y2= sigmf(x,5 4); y3= sigmf(x,5 6); y4= sigmf(x,5 8); subplot(2,1,2),plot(x,y1 y2 y3 y4); Tm 6-

9、9b 0 2 4 6 8 1000.510 2 4 6 8 1000.51m 6-9 6.1.9 y S f f smf T y = smf(x,a b) % xM a b wL| sb 6-10 x=0:0.1:10; y=smf(x,1 8); plot(x,y) Tm 6-10b MATLAB6.0 m 206 0 2 4 6 8 1000.20.40.60.81smf, P=1 8m 6-10 6-11 x = 0:0.1:10; subplot(3,1,1);plot(x,smf(x,2 8); subplot(3,1,2);plot(x,smf(x,4 6); subplot(3,

10、1,3);plot(x,smf(x,6 4); Tm 6-11b 0 1 2 3 4 5 6 7 8 9 1000.510 1 2 3 4 5 6 7 8 9 1000.510 1 2 3 4 5 6 7 8 9 1000.51m 6-11 6.1.10 y 0 f f trapmf T y = trapmf(x,a b c d) 0 f Vr T=xd0dxc,cdxdcxb,1bxa,abaxax,0)d,c,b,a;x(f f(x;a,b,c,d) = max(min( )0),cdxd,1,abaxl_ x wL a,b,c,d a d0/P . b c0 P 6c 207 .b 6-

11、12 x=0:0.1:10; y=trapmf(x,1 5 7 8); plot(x,y) xlabel(trapmf, P=1 5 7 8) Tm 6-12b 6-13 x = (0:0.1:10); y1= trapmf(x,2 3 7 9); y2 = trapmf(x,3 4 6 8); y3= trapmf(x,4 5 5 7); y4= trapmf(x,5 6 4 6); plot(x,y1 y2 y3 y4); Tm 6-13b 0 1 2 3 4 5 6 7 8 9 1000.10.20.30.40.50.60.70.80.91trapmf, P=1 5 7 8 0 2 4

12、6 8 1000.20.40.60.81m 6-12 m 6-13 6.1.11 y f f trimf T y = trimf(x,params) y = trimf(x,a b c) f Vr T=xc0cxb,bcxcbxa,abaxax,0),c,b,a;x(f f(x;a,b,c,) = max(min( )0),bcxc,abaxl_ x wL a,b,c a c /P b 1 p a cb , 3 f 9BdB XBldB f 5 P trapmff b 6-14 MATLAB6.0 m 208 x=0:0.1:10; y=trimf(x,3 6 8); plot(x,y) xl

13、abel(trimf, P=3 6 8) Tm 6-14b 0 1 2 3 4 5 6 7 8 9 1000.10.20.30.40.50.60.70.80.91trimf, P=3 6 8m 6-14 6-15 x = (0:0.2:10); y1= trimf(x,3 4 5); y2 = trimf(x,2 4 7 ); y3= trimf(x,1 4 9); subplot(2,1,1),plot(x,y1 y2 y3 ); y1= trimf(x,2 3 5); y2 = trimf(x,3 4 7); y3= trimf(x,4 5 9); subplot(2,1,2),plot(

14、x,y1 y2 y3 ); Tm 6-15b 0 1 2 3 4 5 6 7 8 9 1000.20.40.60.810 1 2 3 4 5 6 7 8 9 1000.20.40.60.81m 6-15 6.1.12 y Z f f zmf T y = zmf(x,a b) % x1M a b wLb 6-16 x=0:0.1:10; y=zmf(x,3 7); plot(x,y) 6c 209 xlabel(zmf, P=3 7) Tm 6-16b 6-17 x = 0:0.1:10; subplot(3,1,1);plot(x,zmf(x,2 8); subplot(3,1,2);plot

15、(x,zmf(x,4 6); subplot(3,1,3);plot(x,zmf(x,6 4); Tm 6-17b 0 2 4 6 8 1000.20.40.60.81zmf, P=3 70 2 4 6 8 1000.510 2 4 6 8 1000.510 2 4 6 8 1000.51m 6-16 m 6-17 6.1.13 f W f mf2mf T outParams = mf2mf(inParams,inType,outType) Nf “| i =y f 6B inParamsF1 f inType F1 f 31 outType: F1 “S f 31 b 6-18 x=0:0.

16、1:5; mfp1 = 1 2 3; mfp2 = mf2mf(mfp1,gbellmf,trimf); plot(x,gbellmf(x,mfp1),x,trimf(x,mfp2) Tm 6-18b 6.1.14 FISI f fuzzy T fuzzy %l FISI fuzzy(fismat) % P fuzzy(tipper)/m FISI b I i w “dA U F I TbN FZL I iK 2Z T “db Z m3 g ZZ mA U a W ?5) b iBM PZ -M N H M Z b iBM 0 1 2 3 4 500.20.40.60.81m 6-18 MAT

17、LAB6.0 m 210 f I ?5I ?5I b m 6-19 FISI Fu 7M u 7i i“db cFile New mamdani FIS u 7 mamdani “d New Sugeno FIS u 7 Sugeno“d Open from disk VH u 7 .fisq“d Save to disk i -“dH B .fisq Save to disk as Z T i -“dH Open from workspace VT bW FISM B“d Save to workspace i“dT bW - FISM Save to workspace as i“dT b

18、W FISM Close windows 1 GUI cEdit Add input 9F 6B -“d Add output 9F 6B -“d Remove variable “B M Undo -KM cView Edit MFs f I Edit rules ?5I Edit anfis Sugeno“dI View rules ?54 View surface w 4 b T T M cV ? cAnd methodB T4 minaprod Custom cOr methodB T4 maxaprobor q Custom cImplication methodB T4 minap

19、rod Custom N Sugeno “d Vb 6c 211 cAggregation methodB T4 maxasumaprobor CustombN Sugeno “d Vb cDefuzzification method Mamdaniw B T4 centroidE abisector sE amom (Kv E asom Kv KlE alom Kv KvE Customb Sugenow wtaver F ( wtsum F W4b 6.1.15 f I f mfedit T mfedit(a) mfedit(a) mfedit mfedit(a) 3B f I F_i%q

20、 a.fis FIS f b m mfedit(tank)Z Tu 7 f I i tank.fisi% f b mfedit(a) FIS TB MATLABT bWM abMfedit V FIS f I m 6-20 ANFISI GUI B Fu 7M1 GUI au 7 i“db File FISI File ?Mb cEdit Add MF -M 9F f Add custom MF -M 9F f Remove current MF “ - f Remove all MFS “ -M f Undo -KMb cView Edit FIS properties FISI MATLA

21、B6.0 m 212 Edit rules ?5I View rules ?54 View surface w 4 b 6.2 w FIS 6.2.1 P ZEV 3 FIS f genfis1 T fismat = genfis1(data) fismat = genfis1(data,numMFs,inmftype, outmftype) genfis1 anfis 3B Sugeno T SHq FIS S f bgenfis1(data,numMFs,inmftype, outmftype) P sZEV “ 3B FISb Data “KB V UB VU b NumMFs B_ U

22、S B M1 f b TFX P M1M f * P numMFsB bInmftype B31 F M1 f b outmftype B31 F M1 f 6-19 data = rand(10,1) 10*rand(10,1)-5 rand(10,1); numMFs = 3 7; mfType = str2mat(pimf,trimf); fismat = genfis1(data,numMFs,mfType); x,mf = plotmf(fismat,input,1); subplot(2,1,1), plot(x,mf); xlabel(input 1 (pimf); x,mf =

23、 plotmf(fismat,input,2); subplot(2,1,2), plot(x,mf); xlabel(input 2 (trimf); Tm 6-21b 0 0.2 0.4 0.6 0.8 100.51input 1 (pimf)-4 -3 -2 -1 0 1 2 3 4 500.51input 2 (trimf)m 6-21 6c 213 6.2.2 PhE ZEV 3 FIS f genfis2 T fismat = genfis2(Xin,Xout,radii) fismat = genfis2(Xin,Xout,radii,xBounds) fismat = genf

24、is2(Xin,Xout,radii,xBounds,options) Xin B BcB Xout B BcB randi B_ B B TS L B Z8 = xBounds B 2N V | Xin Xout B Z8 = options B V_ E 8b 6-20 fismat = genfis2(Xin,Xout,0.5) PNf KlM b 0.5TSb fismat = genfis2(Xin,Xout,0.5 0.25 0.3) LF 3bL ! Xin a Xout B * 0.5 0.25 Xin BTS 0.3 Xout TSb fismat = genfis2(Xin

25、,Xout,0.5,-10 -5 0; 10 5 20) | Xin Xout ?S 0 1 uW ) b L! Xin a XoutB * XinB V -10 +101 MXin= V -5 +51 M Xout V 0 201 Mb 6.2.3 3B FIS w f gensurf T gensurf(fis) % P - B 3 w “d (fis) w gensurf(fis,inputs,output) % PsY_ input S output B B 3Bmb gensurf(fis,inputs,output,grids) % X Ba Y =aa = readfis(tip

26、per); gensurf(a) Tm 6-22b MATLAB6.0 m 214 m 6-22 6.2.4 | mamdan FIS Sugeno FIS f mam2sug T sug_fis=mam2sug(mam_fis) f |B mamdani FIS A mam_fisB sugeno sug_fisbR sugeno “d f bt mamdani“dq f E b -q Mb 6.2.5 w 9 f evalfis T output= evalfis(input,fismat) output= evalfis(input,fismat, numPts) output, IRR

27、, ORR, ARR= evalfis(input,fismat) output, IRR, ORR, ARR= evalfis(input,fismat, numPts) input B B T B MN N M * evalfis P input BTB _ i OM outputR ML B B_ i O L M fismat19 B FIS numPtsB VM V U S =“ t 9 f T PNM P 101 8b Evalfis / Outputvl ML M V U - LVU FIS M b evalfis VM input B_ H9 t VM IRRYV f 9 M T

28、 Bvl numRulesN numRules ?5H N M b ORRYV f 9 M T BvlnumPtsnumRulesL numRules ?5H L M N BF numRules B =F 6c 215 numRules = GQ wb ARR numPts)“ numPtsL BM H f P fismat w“dS inout 9 _ outputb 6-22 fismat = readfis(tipper); out = evalfis(2 1; 4 9,fismat) T out = 7.0169 19.6810 6.2.6 c ( f fcm T center,U,o

29、bj_fcn = fcm(data,cluster_n) “ c ( ZE data1 “ B“ cluster_n v 1 center US U s f Obj_fcnV “Sf fcm(data,cluster_n,options) P VM options e b T5 / !A U options(1)s U 8 2.0 options(2)KvQ 8 100 options(3)Kl T5 8 1e-5 option(4)VA U 8 1b T iB NaNt P 8 rKvQ H “Sf Q lKl T5 H V b 6-23 data = rand(100, 2); center,U,obj_fcn = fcm(data, 2); plot(data(:,1), data(:,2),o); maxU = max(U); index1 = find(U(1,:) = maxU); index2 = find(U(2, :) = maxU); line(data(index1,1), data(index1, 2), linestyle

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报