ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:517.50KB ,
资源ID:8965905      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-8965905.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(双湖县高中2018-2019学年高二上学期第二次月考试卷数学.doc)为本站会员(爱你没说的)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

双湖县高中2018-2019学年高二上学期第二次月考试卷数学.doc

1、精选高中模拟试卷第 1 页,共 17 页双湖县高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知椭圆 (0b3),左右焦点分别为 F1,F 2,过 F1的直线交椭圆于 A,B 两点,若|AF2|+|BF2|的最大值为 8,则 b 的值是( )A B C D2 已知 ,若存在 ,使得 ,则 的()2)()xgxaea0(,)x00()gxba取值范围是( )A B C. D1,1,2,(2,0)3 已知抛物线 28yx与双曲线 的一个交点为 M,F 为抛物线的焦点,若 ,则该双曲2ya 5MF线的渐近线方程为 A、 B、 C、 D、50x35045

2、0x40xy4 设 是等差数列 的前项和,若 ,则 ( )nSn39a95SA1 B2 C3 D45 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A4 B5 C D3236 设集合 A=x|2x4,B= 2,1,2,4 ,则 AB=( )A1 ,2 B1,4 C1,2 D2 ,47 设有直线 m、n 和平面 、,下列四个命题中,正确的是( )A若 m,n ,则 mn B若 m,n ,m ,n,则 C若 ,m,则 mD若 ,m ,m ,则 m精选高中模拟试卷第 2 页,共 17 页8 已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),则回归直线的方程是(

3、 )A =1.23x+4 B =1.23x0.08 C =1.23x+0.8 D =1.23x+0.089 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A B C D10已知 ,若不等式 对一切 恒成立,则 的最大值为( 2,0() axf(2)(fxfxRa)A B C D71691611411常用以下方法求函数 y=f(x) g(x) 的导数:先两边同取以 e 为底的对数(e2.71828,为自然对数的底数)得 lny=g(x)lnf(x),再两边同时求导,得 y=g(x)lnf(x)+g(x)lnf(x),即 y=f(x)g(x) g(

4、x)lnf (x)+g(x)lnf(x) 运用此方法可以求函数 h(x)=x x(x0)的导函数据此可以判断下列各函数值中最小的是( )Ah( ) Bh( ) Ch( ) Dh( )12函数 f(x)=Asin ( x+)(其中 A0,| | )的图象如图所示,为了得到 g(x)=sin2x 的图象,则只要将 f(x)的图象( )精选高中模拟试卷第 3 页,共 17 页A向右平移 个单位长度 B向右平移 个单位长度C向左平移 个单位长度 D向左平移 个单位长度二、填空题13无论 m 为何值时,直线( 2m+1)x+(m+1)y7m 4=0 恒过定点 14不等式 的解集为 15设函数 f(x)=

5、 ,则 f(f(2)的值为 16已知数列a n的前 n 项和为 Sn,a 1=1,2a n+1=an,若对于任意 nN *,当 t1,1时,不等式x2+tx+1S n恒成立,则实数 x 的取值范围为 17已知点 A(1,1),B (1,2),C (2,1),D(3,4),求向量 在 方向上的投影18设 p:f(x)=e x+lnx+2x2+mx+1 在(0,+)上单调递增,q:m 5,则 p 是 q 的 条件三、解答题19已知:函数 f(x)=log 2 ,g(x)=2ax+1a,又 h(x)=f(x)+g(x)(1)当 a=1 时,求证:h(x)在 x(1,+)上单调递增,并证明函数 h(x

6、)有两个零点;(2)若关于 x 的方程 f(x) =log2g(x)有两个不相等实数根,求 a 的取值范围20已知 mR,函数 f(x)=(x 2+mx+m)e x(1)若函数 f(x)没有零点,求实数 m 的取值范围;(2)若函数 f(x)存在极大值,并记为 g(m),求 g(m)的表达式;(3)当 m=0 时,求证: f(x)x 2+x3精选高中模拟试卷第 4 页,共 17 页21一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速 x(转/秒) 16 14 12 8每小时生产有缺

7、陷的零件数 y(件) 11 9 8 5(1)画出散点图; (2)如果 y 与 x 有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为 10 个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始 = , = x22(本小题满分 12 分)已知函数 ,数列 满足: , ( ).21()xfna121nnafN(1)求数列 的通项公式;na(2)设数列 的前 项和为 ,求数列 的前 项和 .nSnnT【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.精选高中模拟试卷第 5 页,共 17 页23已知

8、A、B、C 为ABC 的三个内角,他们的对边分别为 a、b、c,且(1)求 A;(2)若 ,求 bc 的值,并求ABC 的面积24已知函数 f(x)=xlnx+ax(aR)()若 a=2,求函数 f(x)的单调区间;()若对任意 x(1,+ ),f(x)k(x1)+ax x 恒成立,求正整数 k 的值(参考数据:ln2=0.6931,ln3=1.0986)精选高中模拟试卷第 6 页,共 17 页双湖县高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:|AF 1|+|AF2|=|BF1|+|BF2|=2a=6,|AF 2|+|BF2|的最大

9、值为 8,|AB|的最小值为 4,当 ABx 轴时,|AB|取得最小值为 4, =4,解得 b2=6,b= 故选:D【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题2 【答案】A 【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值. 【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题利用导数研究函数 fx的单调性进一步求函数最值的步骤:确定函数 fx的定义域;对 fx求导;令 0fx,解不等式得的范围就是递增区间;令 0fx,解不等式得的范围就是递减区间;根据单调性求函数 f的极值及最值(若只

10、有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).精选高中模拟试卷第 7 页,共 17 页3 【答案】【解析】:依题意,不妨设点 M 在第一象限,且 Mx0,y 0,由抛物线定义,|MF |x 0 ,得 5x 02.p2x03,则 y 24,所以 M3,2 ,又点 M 在双曲线上,20 6 241,则 a2 ,a ,32a2 925 35因此渐近线方程为 5x3y0.4 【答案】A【解析】1111试题分析: 故选 A111199553()21aS考点:等差数列的前项和5 【答案】D【解析】试题分析:因为根据几何体的三视图可得,几何体为下图 相互垂直,面 面,ADBGAEFG

11、,根据几何体的性质得:,/,3,1ABCEABDGE 223,(3)C, ,所以最长为 22734524,10,FC考点:几何体的三视图及几何体的结构特征6 【答案】A【解析】解:集合 A=x|2x4,B= 2,1,2,4 ,则 AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题7 【答案】D精选高中模拟试卷第 8 页,共 17 页【解析】解:A 不对,由面面平行的判定定理知, m 与 n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线;故选:D8 【答案】D【解析】解:设回归直线方程为 =1.23x+

12、a样本点的中心为(4,5),5=1.234+aa=0.08回归直线方程为 =1.23x+0.08故选 D【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题9 【答案】C【解析】解:如图所示,BCD 是圆内接等边三角形,过直径 BE 上任一点作垂直于直径的弦,设大圆的半径为 2,则等边三角形 BCD 的内切圆的半径为 1,显然当弦为 CD 时就是BCD 的边长,要使弦长大于 CD 的长,就必须使圆心 O 到弦的距离小于|OF|,记事件 A=弦长超过圆内接等边三角形的边长= 弦中点在内切圆内 ,由几何概型概率公式得 P(A)= ,即弦长超过圆内接等边三角形边长的概率是 故选 C【点评】本

13、题考查了几何概型的运用;关键是找到事件 A 对应的集合,利用几何概型公式解答10【答案】C 精选高中模拟试卷第 9 页,共 17 页【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题当 (如图 1)、 (如图 2)时,不等式不可能恒成立;当 时,如图 3,直线0a0a 0a与函数 图象相切时, ,切点横坐标为 ,函数 图象经过点2()yxyx916a82yax时, ,观察图象可得 ,选 C, 211【答案】B【解析】解:(h(x)=x xxlnx+x(lnx )=xx(lnx+1),令 h(x)0,解得:x ,令 h(x)0,解得:0x ,h(x)在(0, )递减,在( ,+)递增

14、,h( )最小,故选:B【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查12【答案】A【解析】解:根据函数的图象:A=1又解得:T=则:=2当 x= ,f( )=sin ( +)=0解得:所以:f(x)=sin(2x+ )要得到 g(x)=sin2x 的图象只需将函数图象向右平移 个单位即可故选:A【点评】本题考查的知识要点:函数图象的平移变换,函数解析式的求法属于基础题型二、填空题精选高中模拟试卷第 10 页,共 17 页13【答案】 (3,1) 【解析】解:由(2m+1 )x+(m+1)y 7m4=0,得即(2x+y 7)m+(x+y4)=0,2x+y 7=0,且 x+y4=0

15、,一次函数(2m+1 )x+ (m+1)y 7m4=0 的图象就和 m 无关,恒过一定点 由,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)14【答案】 (0,1 【解析】解:不等式 ,即 ,求得 0x1,故答案为:(0,1【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题15【答案】 4 【解析】解:函数 f(x)= ,f( 2)=4 2= ,f(f( 2)=f( )= =4故答案为:416【答案】 (, ,+) 【解析】解:数列a n的前 n 项和为 Sn,a 1=1,2a n+1=an,数列 an是以 1 为首项,以 为公比的等比数列,Sn= =2(

16、 ) n1,精选高中模拟试卷第 11 页,共 17 页对于任意 nN *,当 t1,1时,不等式 x2+tx+1S n恒成立,x2+tx+12,x2+tx10,令 f(t)=tx+x 21, ,解得:x 或 x ,实数 x 的取值范围(, ,+ )17【答案】 【解析】解:点 A(1,1),B(1,2),C (2,1),D(3,4),向量 =(1+1 ,21)=(2,1),=(3+2,4+1 )= (5,5);向量 在 方向上的投影是= = 18【答案】 必要不充分 【解析】解:由题意得 f(x)=e x+ +4x+m,f( x) =ex+lnx+2x2+mx+1 在(0,+)内单调递增,f(

17、x)0,即 ex+ +4x+m0 在定义域内恒成立,由于 +4x4,当且仅当 =4x,即 x= 时等号成立,故对任意的 x(0,+),必有 ex+ +4x5mex 4x 不能得出 m5但当 m5 时,必有 ex+ +4x+m0 成立,即 f(x)0 在 x(0,+)上成立p 不是 q 的充分条件,p 是 q 的必要条件,即 p 是 q 的必要不充分条件精选高中模拟试卷第 12 页,共 17 页故答案为:必要不充分三、解答题19【答案】 【解析】解:(1)证明:h(x)=f(x)+g(x)=log 2 +2x,=log2(1 )+2x;y=1 在(1,+)上是增函数,故 y=log2(1 )在(

18、1,+)上是增函数;又y=2x 在(1,+ )上是增函数;h(x)在 x(1,+)上单调递增;同理可证,h(x)在(,1)上单调递增;而 h(1.1)=log 221+2.20,h(2)=log 23+40;故 h(x)在(1,+)上有且仅有一个零点,同理可证 h(x)在(,1)上有且仅有一个零点,故函数 h(x)有两个零点;(2)由题意,关于 x 的方程 f(x)=log 2g(x)有两个不相等实数根可化为1 =2ax+1a 在(,1)(1,+)上有两个不相等实数根;故 a= ;结合函数 a= 的图象可得,a0;即1a0精选高中模拟试卷第 13 页,共 17 页【点评】本题考查了复合函数的单

19、调性的证明与函数零点的判断,属于中档题20【答案】 【解析】解:(1)令 f(x) =0,得(x 2+mx+m)e x=0,所以 x2+mx+m=0因为函数 f(x)没有零点,所以 =m 24m0,所以 0 m4(2)f(x)=(2x+m)e x+(x 2+mx+m)e x=(x+2)(x+m )e x,令 f(x)=0,得 x=2,或 x=m,当 m2 时,m 2列出下表:x (,m) m (m ,2) 2 (2,+)f( x) + 0 0 +f(x) mem (4 m)e 2 当 x=m 时,f (x)取得极大值 mem当 m=2 时,f( x)= (x+2) 2ex0,f(x)在 R 上

20、为增函数,所以 f(x)无极大值当 m2 时,m 2列出下表:x (,2) 2 ( 2,m ) m (m,+)精选高中模拟试卷第 14 页,共 17 页f( x) + 0 0 +f(x) (4m)e 2 mem 当 x=2 时,f( x)取得极大值(4m )e 2,所以(3)当 m=0 时, f(x)=x 2ex,令 (x)=e x1x,则 (x)=e x1,当 x0 时, (x)0,(x)为增函数;当 x0 时,(x)0, (x)为减函数,所以当 x=0 时, (x)取得最小值 0所以 (x) (0)=0 ,e x1x0,所以 ex1+x,因此 x2exx2+x3,即 f(x)x 2+x3【

21、点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键21【答案】 【解析】【专题】应用题;概率与统计【分析】(1)利用所给的数据画出散点图;(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出 a,写出线性回归方程(3)根据上一问做出的线性回归方程,使得函数值小于或等于 10,解出不等式【解答】解:(1)画出散点图,如图所示:(2) =12.5, =8.25,b= 0.7286,a=0.8575回归直线方程为:y=0.7286x0.8575;(3)要使 y10,则 0.72

22、8 6x0.857510,x14.901 9故机器的转速应控制在 14.9 转/秒以下精选高中模拟试卷第 15 页,共 17 页【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目22【答案】【解析】(1) , . 21()xf1()2nnnafa即 ,所以数列 是以首项为 2,公差为 2 的等差数列, nana . (5 分)1()()d(2)数列 是等差数列,n ,2(1)nS . (8 分)1()n 123nTSS 11()()()()4. (12 分)n23【答案】【解析】解:(1)A、B、C 为ABC 的三个内角,且 cosBcos

23、CsinBsinC=cos(B+C)= ,B+C= ,则 A= ;(2)a=2 ,b+c=4,cosA= ,精选高中模拟试卷第 16 页,共 17 页由余弦定理得:a 2=b2+c22bccosA=b 2+c2+bc=(b+c) 2bc,即 12=16bc ,解得:bc=4,则 SABC = bcsinA= 4 = 【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键24【答案】 【解析】解:(I)a=2 时,f(x)=xlnx2x,则 f(x)=lnx1令 f(x)=0 得 x=e,当 0xe 时,f (x)0,当 xe 时,f(x)0,

24、f(x)的单调递减区间是(0,e),单调递增区间为( e,+ )(II)若对任意 x(1,+),f(x)k(x1)+axx 恒成立,则 xlnx+axk(x1)+ax x 恒成立,即 k(x 1)xlnx+ax ax+x 恒成立,又 x1 0,则 k 对任意 x(1,+)恒成立,设 h(x)= ,则 h(x)= 设 m(x)=xlnx2,则 m(x)=1 ,x(1,+), m(x)0,则 m(x)在(1,+)上是增函数m(1)=10,m(2)= ln20,m(3)=1ln3 0,m(4)=2ln4 0,存在 x0(3,4),使得 m(x 0)=0,当 x(1,x 0)时,m(x)0,即 h(x)0,当 x(x 0,+)时,m(x)0,h(x)0,h(x)在(1,x 0)上单调递减,在(x 0,+)上单调递增,h(x)的最小值 hmin(x)=h(x 0)= m(x 0)=x 0lnx02=0,lnx 0=x02h(x 0)= =x0kh min(x)=x 03x 04,k3k 的值为 1,2,3精选高中模拟试卷第 17 页,共 17 页【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出 h(x)的最小值是解题关键,属于难题

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报