ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:547KB ,
资源ID:8892551      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-8892551.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(复变函数与-积分变换答案内容(马柏林李丹横晏华辉)修订版习题2.doc)为本站会员(小屁孩)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

复变函数与-积分变换答案内容(马柏林李丹横晏华辉)修订版习题2.doc

1、#*习题二1. 求映射 下圆周 的像.1wz|2z解:设 则i,ixyuv2221ii()ixyxyuvxyyx因为 ,所以24xy53i4uv所以 ,5u3vy534,x所以 即 ,表示椭圆.2534uv22531uv2. 在映射 下,下列 z 平面上的图形映射为 w 平面上的什么图形,设 或2wz eiw.iuv(1) ; (2) ;0,4r 02,4r(3) x=a, y=b.(a, b 为实数)解:设 22i(iwuvxiyxy所以 2,.(1) 记 ,则 映射成 w 平面内虚轴上从 O 到 4i 的一段,即ei02,4r04,.2(2) 记 ,则 映成了 w 平面上扇形域,即eiw0

2、,24r 04,.2#*(3) 记 ,则将直线 x=a 映成了 即 是以原点为焦wuiv2,.uayv224().au点,张口向左的抛物线将 y=b 映成了 ,.xbx即 是以原点为焦点,张口向右抛物线如图所示.224()vbu3. 求下列极限.(1) ;21limz解:令 ,则 .t,0t于是 .2201lilizt(2) ;0Re()mz解:设 z=x+yi,则 有()izxy00e()1liliiizxykk显然当取不同的值时 f(z)的极限不同所以极限不存在.(3) ;2lim(1)zi解: = .liz 1lilim()()2z zi#*(4) .21limzz解:因为 2(2)12

3、,z所以 .2113liliz z4. 讨论下列函数的连续性:(1) 2,0,()0;xyzfz解:因为 ,20(,)0,limlizxyf若令 y=kx,则 ,(,),li1xyk因为当 k 取不同值时,f( z)的取值不同,所以 f(z)在 z=0 处极限不存在.从而 f(z)在 z=0 处不连续,除 z=0 外连续.(2) 342,0,()0.xyfz解:因为 ,33422xy所以342(,)0,lim(0)xyf所以 f(z)在整个 z 平面连续.5. 下列函数在何处求导?并求其导数.(1) (n 为正整数 );1()fz解:因为 n 为正整数,所以 f(z)在整个 z 平面上可导.1

4、()fz(2) .2()z解:因为 f(z)为有理函数,所以 f(z)在 处不可导 .21)(0z从而 f(z)除 外可导 .1,i#*22232()1()(1)(1)543()zzzfz (3) .87f解:f(z)除 外处处可导,且 .=5 223(57)(8)561) (7)zf z(4) .22ixyf解:因为 .2222i()i(i)(i)1(i)1i()xyxyzfz xyz所以 f(z)除 z=0 外处处可导,且 .2(1i)fz6. 试判断下列函数的可导性与解析性.(1) ;2()ifzxy解: 在全平面上可微.2,()uvxy2 2,y vxxyy所以要使得 , , vxux

5、只有当 z=0 时,从而 f(z)在 z=0 处可导,在全平面上不解析.(2) .2ixy解: 在全平面上可微.2(,),()uv2,0,2vx yyx只有当 z=0 时, 即(0,0) 处有 , .u所以 f(z)在 z=0 处可导,在全平面上不解析.(3) ;32ixy解: 在全平面上可微.3(,),()uv2 26,0,9,0vxyyx所以只有当 时,才满足 C-R 方程.3#*从而 f(z)在 处可导,在全平面不解析 .230xy(4) .f解:设 ,则izxy23232()i)(ii()fzxyxyxy3232(,),uv2 2,3uvvxyxyxyyx所以只有当 z=0 时才满足

6、C-R 方程.从而 f(z)在 z=0 处可导,处处不解析.7. 证明区域 D 内满足下列条件之一的解析函数必为常数.(1) ;()0fz证明:因为 ,所以 , .()f 0uxy0vxy所以 u,v 为常数,于是 f(z)为常数.(2) 解析.()fz证明:设 在 D 内解析 ,则ifuv()uvxyxy,uvuvxyx而 f(z)为解析函数,所以 ,uvyx所以 即,vvxy 0xy从而 v 为常数,u 为常数,即 f(z)为常数.(3) Ref(z)=常数.证明:因为 Ref(z)为常数,即 u=C1, 0uxy因为 f(z)解析,C-R 条件成立。故 即 u=C2从而 f(z)为常数.

7、(4) Imf(z)=常数.#*证明:与(3)类似,由 v=C1 得 0vxy因为 f(z)解析,由 C-R 方程得 ,即 u=C2u所以 f(z)为常数.5. |f(z)|=常数.证明:因为|f( z)|=C,对 C 进行讨论 .若 C=0,则 u=0,v=0,f(z)=0 为常数.若 C 0,则 f(z) 0,但 ,即 u2+v2=C22)(fz则两边对 x,y 分别求偏导数,有2,20uvuvy利用 C-R 条件,由于 f(z)在 D 内解析,有xyx所以 所以0uvvx0,uvxx即 u=C1,v=C2,于是 f(z)为常数.(6) argf(z)=常数.证明:arg f(z)=常数,

8、即 ,arctnvCu于是2222()()(/) 01 vuuv yxv得 C-R 条件 0uxvy 0vxu解得 ,即 u,v 为常数,于是 f(z)为常数 .0vxy8. 设 f(z)=my3+nx2y+i(x3+lxy2)在 z 平面上解析,求 m,n,l 的值.解:因为 f(z)解析,从而满足 C-R 条件.2,uunxmn23,vvlylxyunlx#*3,uvnlmyx所以 .,1l9. 试证下列函数在 z 平面上解析,并求其导数.(1) f(z)=x3+3x2yi-3xy2-y3i证明:u(x,y)=x 3-3xy2, v(x,y)=3x2y-y3 在全平面可微,且2 266,3

9、uvvxxy所以 f(z)在全平面上满足 C-R 方程,处处可导,处处解析.222i3i3(i)vxyyz(2) .()ecosin)ecosinx xfz证明: 处处可微,且,(i,(,)=ecosin)x xuyyvyye(cosin)e(cos)six xxi incos)x xyyyyye(cosin)e(si)(cosinx xxv(cocos)x xyyyxy所以 , uvvx所以 f(z)处处可导,处处解析 .ie(cosincos)i(ecosins)cosi e(1)x xx xx xzzyyyyy10. 设 332i,0.0.xyzfz求证:(1) f( z)在 z=0 处

10、连续(2)f(z)在 z=0 处满足柯西黎曼方程(3)f(0)不存在证明.(1) 0,0,limlii,zxyuvxy#*而 32,0, ,0,limlixyxyu3221320xyx 32,0,limxy同理 ,li0xy ,0,xyfzff(z)在 z=0 处连续(2)考察极限 0()limzf当 z 沿虚轴趋向于零时,z=iy,有320 011iliili1iy yff当 z 沿实轴趋向于零时,z= x,有0limixff它们分别为 i,uvuxy ,y满足 C-R 条件(3)当 z 沿 y=x 趋向于零时,有330 0i,1iilimlim21ixy xyff x 不存在即 f(z)在

11、 z=0 处不可导z11. 设区域 D 位于上半平面,D 1 是 D 关于 x 轴的对称区域,若 f(z)在区域 D 内解析,求证在区域 D1 内解析Fzf证明:设 f(z)=u(x,y)+iv(x,y),因为 f(z)在区域 D 内解析所以 u(x,y),v(x,y)在 D 内可微且满足 C-R 方程,即 ,uvvxyx,得,i,i,fzxy#*,uxy,uxyuxy,vx,vvyy故 (x,y),(x,y)在 D1 内可微且满足 C-R 条件 ,xyx从而 在 D1 内解析fz13. 计算下列各值(1) e2+i=e2ei=e2(cos1+isin1)(2) 2i33 31ecosisne

12、i3i (3) 22222ii222Reecosisnxyyxxyxy yx (4) i2ii2eexyxy14. 设 z 沿通过原点的放射线趋于点,试讨论 f(z)=z+ez 的极限解:令 z=rei,对于 , z时,r故 iieiiscnolmlerrr所以 izf15. 计算下列各值(1) 3ln23i=l1iarg23iln1iarctn2(2) n li66(3)ln(ei)=ln1+iarg(ei)=ln1+i=i#*(4) lnieliarge1i216. 试讨论函数 f(z)=|z|+lnz 的连续性与可导性解:显然 g(z)=|z|在复平面上连续,ln z 除负实轴及原点外处

13、处连续设 z=x+iy, 2)| ,i,xyuxvy在复平面内可微2,0uv12222xuyxyyx0v故 g(z)=|z|在复平面上处处不可导从而 f(x)=|z|+lnz 在复平面上处处不可导f(z)在复平面除原点及负实轴外处处连续17. 计算下列各值(1) 1i1iln2i1ilnilni 4ln2iln2l44ln24eee coslisnl24el2ilkkkk (2) 55ln3ln3li2il5i2i5ln3eecos1s15inkk (3) iiln1iln1il102ii2eekkk#* 1i 1i1ilniln221ilnii1ii44i22i 424eeecosin4()

14、 i4ekkkk18. 计算下列各值(1) i5i5i5i5eecos221ch(2) i5i15ii555eesin22co1iscosinieein122(3) i3i3ii2esi sin6ita3coch132(4) 2 2ii222221sinesniosichohi cihsnyxzxyxyxy (5) 2arcili1iln10,1ilnik (6) 12i2arct12lnii5arct4k19. 求解下列方程(1) sinz=2#*解: 1arcsin2li3ln23il i12iln23,0,1zkk(2) e3i0z解: 即1zln13iln2ii2zkk(3) lni2

15、z解: 即lii2ez(4) 10z解: 1lniliiln2i44kk20. 若 z=x+iy,求证(1) sinz=sinxchy+icosxshy证明:iiiiiieesin221.sichos.xyzyxy(2)cosz=cosxchy-isinxshy证明: iiiiiie1cose2ecosine.cosin22cshiszxyxyyxyyxxxxy(3)|sinz|2=sin2x+sh2y证明: ii1sinesnchioshxy xy222222icho.sssinsinzxyxy#*(4)|cosz|2=cos2x+sh2y证明: coschisnxy222222hsscosin.shcoz xyxy21. 证明当 y时,|sin(x+iy)| 和|cos( x+iy)|都趋于无穷大证明: ii ii11sinee22zy iii ieeyxyxy而 ii11sne22yxxyz当 y+时,e -y0,e y+有|sinz|当 y-时,e -y+,e y0 有|sinz|同理得 ii11cosi e22xyx所以当 y时有|cosz|

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报