ImageVerifierCode 换一换
格式:PPT , 页数:31 ,大小:709.50KB ,
资源ID:8611930      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-8611930.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第十三章 第5讲 直线、平面垂直的判定与性质.ppt)为本站会员(hskm5268)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

第十三章 第5讲 直线、平面垂直的判定与性质.ppt

1、第5讲 直线、平面垂直的判定与性质,1直线与平面垂直,任意,垂直,(1)直线与平面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的_一条直线都_,那么这条直线和这个平面垂直(2)直线与平面垂直判定定理:如果一条直线和一个平面内的两条_直线都垂直,那么这条直线垂直于这个平面(3)直线与平面垂直性质定理:垂直于同一个平面的两条直线,_,平行,相交,2平面与平面垂直(1)平面与平面垂直的定义:相交成直二面角的两个平面,叫做互相垂直的平面(2)平面与平面垂直的判定定理:如果一个平面经过另一个平,面的_,那么这两个平面互相垂直,垂线,(3)平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一

2、个平面内垂直于它们_的直线垂直于另一个平面3直线与平面所成的角(1)如果直线与平面平行或者在平面内,则直线与平面所成的角等于 0.,交线,(2)如果直线和平面垂直,则直线与平面所成的角等于 90.(3)平面的斜线与它在平面上的射影所成的锐角叫做这条斜线与平面所成的角,其范围是(0,90)斜线与平面所成的_是这条斜线和平面内经过斜足的直线所成的一切角中最_的角,4二面角,线面角,小,从一条直线出发的两个半平面组成的图象叫做二面角从二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角平面角是直角,的二面角叫做_,直二面角,1垂直于同一条直线的两条直线

3、一定(,),D,A平行C异面,B相交D以上都有可能,2A,B 为空间两点,l 为一条直线,则过 A,B 且垂直于 l,的平面(,),B,A不存在C有且只有 1 个,B至多 1 个D有无数个,3若 P 是平面外一点,则下列命题正确的是(,),D,A过 P 只能作一条直线与平面相交B过 P 可作无数条直线与平面垂直C过 P 只能作一条直线与平面平行D过 P 可作无数条直线与平面平行4如图 1351,在正方体 ABCDA1B1C1D1中,下列结论,D,图 1351,中正确的个数是( )BD1AC;BD1A1C1;BD1B1C.,A0 个,B1 个,C2 个,D3 个,5给定下列四个命题:若一个平面内

4、的两条直线与另一个平面都平行,那么这两个平面相互平行;若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;垂直于同一直线的两条直线相互平行;若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直,其中,为真命题的是(,),D,A和,B和,C和 D和,考点1,直线与平面垂直的判定与性质,例1:如图 352,已知矩形 ABCD,过 A 作 SA平面 AC,再过 A 作 AESB 于 E 点,过 E 作 EFSC 交 SC 于 F 点(1)求证:AFSC(2)若平面 AEF 交 SD 于 G,求证:AGSD.图 1352,解析:(1)证明:因为BC面 SAB,且 AE 在面

5、SAB 内,所以 AEBC.,又因为 AESB,SBBCB,所以 AE面 SBC.,而 SC 在面 SBC 内,所以 AESC.,又因为 EFSC,EFAEE,所以 SC面 AEF.,而 AF 在面 AEF 内,所以 AFSC.,直线与直线垂直直线与平面垂直平面与平面垂直直线与平面垂直直线与直线垂直,通过直线与平面位置关系的不断转化来处理有关垂直的问题出现中点时,平行要联想到三角形中位线,垂直要联想到三角形的高;出现圆周上的点时,联想直径所对圆周角为直角,【互动探究】1如图 1353,PA O 所在的平面,AB 是O 的直径,C 是O 上的一点,E,F 分别是 A 在 PB,PC 上的射影,给

6、出下,面结论,其中正确命题的个数是(,),B,图 1353,AFPB;EFPB;AFBC;AE平面 PBC.,A2 个C4 个,B3 个D5 个,解析:正确,又 AF平面 PBC,错误,考点2,平面与平面垂直的判定与性质,例 2:(2011 年江苏)如图 1354,在四棱锥 PABCD 中,平面 PAD平面ABCD,ABAD,BAD60,E,F分别是AP,AD 的中点求证:(1)直线 EF平面 PCD;(2)平面 BEF平面 PAD图 1354,证明:(1)E,F 分别是AP,AD 的中点,EFPD.又PD面 PCD,EF 面 PCD,直线 EF平面 PCD.,(2)ABAD,BAD60,F

7、是AD 的中点,BFAD.,又平面 PAD平面 ABCD,面PAD面 ABCDAD,BF面 PAD.,平面 BEF平面PAD.,BF AD BF面PAD( 因为平面PAD平面ABCD)平面BEF平面PAD(因为 BF平面BEF)前者利用面面垂直的性质定理,后者利用面面垂直的判定定理,【互动探究】,2(2011 年浙江)下列命题中错误的是(,),D,A如果平面平面,那么平面内一定存在直线平行于平 面B如果平面不垂直于平面,那么平面内一定不存在直线 垂直于平面C如果平面平面,平面平面,l,那么l平面D如果平面平面,那么平面内所有直线都垂直于平 面解析:因为若这条线是平面和平面的交线l,则交线l 在

8、平面内,明显可得交线l 在平面内,所以交线l 不可能垂直于平面,平面内所有直线都垂直于平面是错误的,考点3,线面所成的角,例 3:如图 1355,在正方体 ABCDA1B1C1D1中,求A1B与平面A1B1CD所成的角图 1355,求直线和平面所成的角时,应注意的问题是:(1)先判断直线和平面的位置关系(2)当直线和平面斜交时,常有以下步骤:作作出或找到斜线与射影所成的角;证论证所作或找到的角为所求的角;算常用解三角形的方法求角;结论点明斜线和平面所成的角值,【互动探究】3如图 1356,在长方体 ABCDA1B1C1D1中,ABBC,2,AA11,则 AC1 与平面 A1B1C1D1所成角的

9、正弦值为(,),图 1356,图 D27,答案:D,考点4,立体几何中的探索性问题,例 4:(2011 年广东茂名一模)如图 1357,在四棱锥 PABCD 中,底面 ABCD 为菱形,BAD60,Q 为 AD 的中点(1)若 PA PD,求证:平面 PQB平面 PAD;(2)点 M 在线段 PC 上,PMtPC,试确定 t 的值,使 PA 平面 MQB.图 1357,解析:(1)如图1358,连接 BD,四边形 ABCD 菱形,,BAD60,,ABD 为正三角形又Q 为 AD 中点,ADBQ.PA PD,Q 为 AD 的中点,ADPQ.又 BQPQQ,AD平面 PQB.又 AD平面 PAD,

10、,平面 PQB平面 PAD.,图1358,探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备要求解答者自己去探索,结合已有条件,进行观察、分析、比较和概括它对学生的数学思想、数学意识及综合运用数学方法的能力提出了较高的要求它有利于培养学生探索、分析、归纳、判断、讨论与证明等方面的能力,使学生经历一个发现问题、研究问题、解决问题的全过程,【互动探究】4(2011 年广东深圳一模)如图 1359,在四棱锥 SABCD中,ABAD,AB/CD,CD3AB,平面SAD平面ABCD,M 是线段 AD 上一点,AMAB,DMDC,SMAD.(1)证明:BM平面 SMC;,图 1359,(

11、1) 证明:平面SAD平面ABCD,平面SAD平面ABCD,AD,,SM平面 SAD,SMAD,SM平面 ABCD.,BM平面 ABCD, SMBM.,四边形 ABCD 是直角梯形,AB/CD,AMAB,DMDC, MAB,MDC 都是等腰直角三角形,,AMBCMD45,BMC90.BMCM.SM平面 SMC,CM平面 SMC,SMCMM,BM平面 SMC.,(2)解:三棱锥 CSBM 与三棱锥SCBM 的体积相等,由( 1 ) 知 SM平面 ABCD,,1证明线面垂直的方法,(1)用线面垂直的定义:若一直线垂直于平面内任一直线,这,条直线垂直于该平面,(2)用线面垂直的判定定理:若一直线垂直

12、于平面内两条相交,直线,这条直线垂直于该平面,(3)用线面垂直的性质定理:若两平行直线之一垂直于平面,,则另一条直线也垂直于该平面,(4)用面面垂直的性质定理:若两个平面垂直,在一个平面内,垂直于交线的直线必垂直于另一个平面,(5)如果一条直线垂直于两个平行平面中的一个,那么也垂直,于另一个平面,(6)如果两个相交平面都和第三个平面垂直,那么相交平面的,交线也垂直于第三个平面,2判定面面垂直的方法,(1)定义法:首先找二面角的平面角,然后证明其为直角(2)用面面垂直的判定定理:一个平面经过另一个平面的一条,垂线,3垂直于同一个平面的两条直线平行,是判定两条直线平行的又一重要方法,是实现空间中平

13、行关系和垂直关系在一定条件下相互转化的一种手段,4本节教材中线面垂直的性质定理的证明用到反证法,反证法属逻辑方法范畴,它的严谨体现在它的原理上,即“否定之否定等于肯定”,其中第一个否定是指否定结论,第二个否定是指“逻辑推理结果否定了假设”,5常用定理:(1)过一点有且只有一条直线与已知平面垂直(2)过一点有且只有一个平面与已知直线垂直;,(3)如果两个平面互相垂直,那么经过第一个平面内的一点垂,直于第二个平面的直线必在第一个平面内,1面面垂直的性质定理是证明线面垂直的依据和方法,在解决二面角的问题中,作其平面角经常用到,应用定理的关键是创设定理成立的条件:一是线在面内,二是线垂直于交线两个条件同时具备才能推出线面垂直,2线线垂直、线面垂直、面面垂直的相互转化是解决有关垂直证明题的指导思想,既要注意一般的转化规律,又要看清题目的条件,选择正确的转化方向,不能过于模式化复杂的题目不是一次或两次就能完成,而是不断从某一垂直向另一垂直转化,最终达到目的,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报