ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:100KB ,
资源ID:8571795      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-8571795.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(现金流量信息含量与财务困境预测.doc)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

现金流量信息含量与财务困境预测.doc

1、1现金流量信息含量与财务困境预测内容提要:本文考察了现金流量信息在财务困境预测中的信息含量,研究发现,无论在财务困境前一年还是前两年,经营性现金流量在会计比率的基础上均具有显著的增量信息含量,而在财务困境前两年,投资性现金流量也具有增量信息含量,同时加入经营性现金流量和投资性现金流量可使模型总误判率最低。关键词:财务困境,现金流量,信息含量引言自从 Beaver(1966)和 Altman(1968)的开创性研究发表以来,关于财务困境预测的研究持续至今已有近四十年的历史 i。在国内,自从 1998 年我国证券市场引入上市公司特别处理(ST)制度以来,截止 2003 年底被特别处理的公司累计达

2、207 家。这类陷入财务困境的 ST 公司数量大,行业分布广,已引起投资者、市场监管机构和相关学者的高度关注。国内财务困境预测的研究大多选择此类公司为财务困境样本。国内外的学者们为什么一直热衷于财务困境预测模型的建立?我们认为原因有两个方面:其一,财务困境的准确预测对企业管理层和投资者可起到警示作用,无论是改变经营政策、财务结构重组,还是自愿清算都可能减少困境所招致的不应有的损失;其二,学者们在财务困境的定义、预测变量和估计模型的选择等方面未能达成一致,不同的研究结论之间缺乏可比性。纵观财务困境预测的现有文献,在预测变量的选择上基本分为四类,即会计比率类、现金流量类、市场收益类和市场收益方差类

3、,其中最为常见的是会计比率类变量。使用会计比率类指标作为预测变量,至少存在两个方面的问题:其一,会计比率的计算均基于资产负债表和损益表的项目,而这两张报表均遵循应计制原则编制而成。不同企业之间会计政策的选择即使不考虑盈余管理因素往往也存在差异,由此造成不同企业之间会计比率缺乏可比性;其二,会计比率自身的局限性。会计比率的分子和分母在理论上应符合配比原则,但实践中并非如此。以销售利润率为例,利润的生成渠道不仅包括销售收入,还包括对外投资和其他非常项目,故以利润/销售比率并不能充分描述利润和销售之间的关系。与会计比率类变量不同,现金流量类、市场收益类和市场收益方差类变量不易被管理者所操纵,具有客观

4、性特征。其中现金流量类指标的编制依据是现金收付制,基本不受会计政策选择的影响,而且以现金流量作为财务困境的预测变量符合理财学的估价原理,即企业的价值等于预期现金流量的净现值。另外,从“技术破产”角度来看,财务困境正是指一个企业处于经营性现金流量不足以抵偿现有到期债务。Beaver( 1966)最早将现金流量信息纳入财务困境预测研究。他运用单变量分析,比较了现金流量/负债总额 ii和其他 6 个应计制会计变量的预测效率,发现现金流量/负债总额具有最佳的预测效率,在财务困境前一年误判率仅 13%,在财务困境前 5 年误判率为 22%iii。此后,Deakin(1972) 、Blum(1974)的研

5、究基本支持 Beaver(1966)的结论。但是,Casey 和 Bartczak(1984,1985 )表明经营性现金流量的预测效率低于应计制会计变量,而且经营性现金流量并不能在应计制会计变量的基础上提供增量预测能力。与上述研究仅考虑单个现金流量比率不同,Gentry,Newbold 和 Whitford(1985)运用 Helfert 资金流量模型(funds flow model) iv,系统地研究了不同的资金流量所具有的预测效率,结果验证了Casey 和 Bartczak(1985)的结论,同时发现股利资金流量在 logit 预测模型中能显著区分2失败企业与非失败企业。Aziz,Ema

6、nuel 和 Lawson(1988)基于 Lawson 现金流量等式 v建立财务困境预测模型,并同先前的 Z 模型和 ZETA 模型进行比较,发现现金流量模型的预测效果更好。由此可见,国外现有文献对现金流量在财务困境预测中是否具有信息含量尚没有一致的结论。本文选择研究现金流量在财务困境预测中的信息含量,主要基于两方面考虑:其一,在国内已有的财务困境预测研究中预测变量均选择应计会计变量,至于现金流量信息的预测价值目前无人考证;其二,我国自 1998 年颁布并实施企业会计准则现金流量表以来,现金流量信息是否具有决策价值一直是一个值得深入、系统研究的课题,本文拟在这一方面提供新的证据。我们的研究意

7、在回答两个递进的问题:其一,与应计制会计变量相比,现金流量在财务困境预测中是否具有相对信息含量,即现金流量的预测能力是否强于应计制会计变量?其二,在应计制会计变量的基础上,现金流量能否提供增量预测信息?研究设计一、样本和数据本文选取沪深两市 2003 年度被特别处理的 A 股上市公司为财务困境企业样本 vi。2003年 ST 事件共 54 起。为获取财务困境前至少 4 年的数据,我们剔除 1998 年以后上市的公司 10 家,另外再剔除 1998-2002 年度数据不全的公司 3 家以及以前年度曾被 ST 的公司 1家。最后获得实际有效样本 40 家。在这 40 家财务困境企业样本中 36 家

8、公司因为最近两年连续亏损而被特别处理,另 4 家公司被特别处理的原因是一年亏损但最近一个会计年度的股东权益低于注册资本。按 1:2 配对非财务困境企业样本 80 家,样本总计 120 家公司。大多数财务困境预测研究按 1:1 对财务困境样本与非财务困境样本进行配对。根据Zmijewski(1984 )的研究,样本中财务困境企业所占比例与 类误判率成反向关系,而与类误判率成正向关系。因此与其他研究相比,本文选择 1:2 的配对比例降低了样本中财务困境企业所占比例,将导致较高的类误判率和较低的类误判率。由于本文仅对现金流量信息与应计制会计变量的财务困境预测效率作比较研究,所以这种误判率的偏差对本文

9、结论不构成影响 vii。必须指出的是,由于 ST 公告基于前期年度的财务业绩而定,我们定义 ST 公告前一年度为财务困境发生年度。对本文选定的样本而言,财务困境发生年度为 2002 年。本文的数据来源于香港理工大学和深圳国泰安信息技术公司联合开发的中国股票市场财务数据库(CSMAR)2003 版。二、变量选择本文选取三类现金流量指标作为研究对象,即经营性现金流量、投资性现金流量和筹资性现金流量。为消除规模的影响,在度量上每类现金流量均除以销售净额 viii。考虑到应计制会计变量对企业财务信息的涵盖面较广,再选取总资产报酬率、流动比率、长期负债股东权益比率、营运资本/总资产、资产周转率等六个会计

10、变量作为控制变量。选择的依据是以上会计变量在国内外的财务困境预测研究中作为预测变量使用的频率较高。关于自变量的详细定义见表 1。表 1 自变量定义名称 符号 计算公式现金流量变量:经营性现金流量 CFO 经营性现金流量净额/销售净额投资性现金流量 CFI 投资性现金流量净额/销售净额筹资性现金流量 CFF 筹资性现金流量净额/销售净额3控制变量:总资产报酬率 NITA 净利润/资产总额流动比率 CACL 流动资产/流动负债长期负债股东权益比率 LLOE 长期负债/股东权益营运资本/总资产 WCTA 营运资本/资产总额资产周转率 SALES/TA 销售收入净额/资产总额三、检验模型本文选择二元

11、logit 模型检验现金流量信息含量与财务困境之间的关系。因变量 DIST为二元变量,若为财务困境企业,取 1,否则取 0。令 P0=Prob(DIST=0),logit 回归模型表述如下:L=lnP0/(1-P0)=a+b1x1+b2x2+bixi其中,L 为似然比,a 为截距项,x i 为第 i 个预测变量,b i 为 xi 对企业陷入财务困境的影响程度。实证结果与分析一、各变量组间均值的 t 检验首先计算 40 家财务困境企业和 80 家非财务困境企业各变量的均值和标准差,然后进行独立样本均值 t 检验,考察两组样本 8 个变量的均值是否存在显著差异。表 2 给出各变量在财务困境前 14

12、 年组间均值双尾 t 检验的两个 t 值,其中第一个 t 值的计算基于方差齐性假设,而第二个 t 值的计算则基于方差不齐假设。由表 2 可以看出,财务困境企业与非财务困境企业的经营性现金流量、资产报酬率、流动比率、营运资本/总资产、资产周转率在财务困境前 12 年具有显著的组间均值差异,其中资产周转率在财务困境前 4 年均具有显著的组间均值差异,而且这些变量的组间均值差异随着财务困境的临近呈扩大趋势。在三类现金流量指标中,仅经营性现金流量具有显著的组间均值差异,因此可以预见,经营性现金流量将比投资性现金流量和筹资性现金流量具有更多的财务困境预测信息含量。表 2 各变量在财务困境前 14 年组间

13、均值 t 检验(双尾)t变量1 2 3 4CFO 4.225*3.355* 1.917*1.848* 0.3970.509 -0.083-0.073CFI -0.498-0.614 -1.640*-1.182 0.1720.215 0.9081.262CFF -1.284-1.035 1.3451.163 -0.356-0.312 -1.041-1.273NITA 6.947*5.102* 1.3741.633 0.3680.303 0.2600.225CACL 1.746*1.854* 1.637*1.865* 0.9850.912 0.7750.887LLOE -0.490-0.451 0

14、.4140.462 2.003*2.626* 1.2391.335WCTA 3.046*2.954* 1.5841.608 1.3881.431 0.7760.7864SALES/TA 2.968*3.356* 2.604*2.901* 2.083*2.476* 1.962*2.332*注:*、*、*表示 1%、5%、10%的显著性水平。二、现金流量相对信息含量单变量 logit 分析事实上,为检验现金流量信息的相对信息含量,只需在单变量 logit 回归模型结果的基础上比较各现金流量变量与应计制会计变量的预测效率即可。具体而言,将 DIST 与各个解释变量进行 logit 回归,得出各自的类

15、误判率、类误判率和总误判率,再进行比较。若现金流量变量的误判率低于应计制会计变量,则说明现金流量在财务困境预测中具有相对信息含量。表 3 给出财务困境前 12 年的单变量 logit 回归结果及相应的误判率。由表 3 可知,在财务困境前一年(t=1) ,资产报酬率的总误判率为 10%,在所有 8 个变量中最低,其中类误判率 25%、类误判率 2.5%。误判率次优的变量是经营性现金流量,总误判率为25.8%,其中类误判率 70%、类误判率 3.7%。表 3 末行列出幼稚模型(naive model)的误判率为 33.3%ix。误判率低于幼稚模型的变量除了资产报酬率和经营性现金流量之外,还包括资产

16、周转率和营运资本/ 总资产,其总误判率分别为 27.5%和 31.3%,估计参数均在1%水平上显著不为 0。而投资性现金流量、筹资性现金流量和其余两个会计比率变量的单变量预测能力均未能超越幼稚模型。由此可见,在财务困境前 1 年与资产报酬率相比较,经营性现金流量不具有相对信息含量,但若与其他会计变量相比较,则具有相对信息含量。在财务困境前两年(t=2) ,资产周转率替代资产报酬率成为误判率最低的变量,总误判率为 30.8%。误判率次优的变量依然是经营性现金流量,为 31.7%。此两个变量估计参数的 p 值分别为 0.013 和 0.063。而投资性现金流量和筹资性现金流量虽然误判率优于幼稚模型

17、,但其估计参数并不显著。从财务困境前 12 年各变量的预测效率来看,经营性现金流量的相对信息含量较为稳定。另外我们发现,离财务困境发生年度越近,各变量的预测信息含量越高 x,这与前文组间均值 t 检验结果和以往财务困境预测相关文献的结论是一致的。表 3 单变量 logit 回归结果及相应的误判率误判率 (%)变量 系数 Wald 统计量 p 值 -2LogLType Type 总计t=1CFO -3.438 11.779 0.001 130.325 70.0 3.7 25.8CFI 0.257 0.248 0.618 152.502 100.0 0.0 33.3CFF 0.405 1.471

18、0.225 151.185 97.5 2.5 34.2NITA -40.238 24.286 0.000 82.184 25.0 2.5 10.0CACL -0.515 2.865 0.091 148.981 100.0 0.0 33.3LLOE 0.456 0.242 0.623 152.525 100.0 0.0 33.3WCTA -3.130 8.143 0.004 143.812 82.5 8.7 31.3SALES/TA-2.382 8.722 0.003 139.906 72.5 5.0 27.5t=2CFO -1.900 3.445 0.063 148.883 92.5 1.2

19、31.7CFI 0.539 0.931 0.335 149.606 97.5 0.0 32.55CFF -0.232 1.328 0.249 150.845 97.5 0.0 32.5NITA -6.774 1.799 0.180 150.854 100.0 3.7 35.8CACL -0.439 2.544 0.111 149.776 100.0 0.0 33.3LLOE -0.498 0.174 0.677 152.586 100.0 0.0 33.3WCTA -1.639 2.447 0.118 150.264 97.5 2.5 34.2SALES/TA-1.792 6.232 0.01

20、3 144.687 87.5 2.5 30.8幼稚模型 33.3注:最佳判定点为 0.5。三、现金流量增量信息含量多变量 logit 分析为考察现金流量在应计制会计变量的基础上是否具有增量预测信息含量,我们先将DIST 与 6 个会计变量进行 logit 回归(以下简称会计比率模型) ,然后在会计比率模型的基础上逐个加入现金流量变量,检验新模型的拟合度是否得到显著提高,即-2LogL 是否显著降低。若-2Log L 显著降低,则预测精确度提高,表明现金流量在应计制会计变量的基础上具有增量预测信息含量。为避免现金流量变量选择上的偏差,本文还将考察三类现金流量变量的不同组合加入会计比率模型之后是否

21、具有增量信息含量。在进行 logit 回归之前,首先计算反映多重共线性程度的方差膨胀因子(VIF) ,发现 8 个变量中最大的 VIF 值仅有2.619,大大低于临界值 10,因此可以认为不存在显著的多重共线性。表 4 多变量 logit 回归结果及相应的误判率注:最佳判定点为 0.5;幼稚模型误判率同表 3; 第 1 列模型中的“+ ”并非数学运算符,而是表误判率(%)模型 -2LogL 自由度 p 值Type Type 总计t=1会计比率模型 25.0 2.5 10CFO 9.237 1 0.002 17.5 2.5 7.5CFI 0.040 1 0.841 25.0 2.5 10CFF

22、2.127 1 0.144 25.0 2.5 10CFO+CFI 9.689 2 0.008 17.5 2.5 7.5CFO+CFF 9.494 2 0.009 17.5 2.5 7.5CFI+CFF 2.137 2 0.344 25.0 2.5 10CFO+CFI+CFF 11.489 3 0.009 17.5 3.7 8.3t=2会计比率模型 77.5 10.0 32.5CFO 5.362 1 0.021 57.5 7.5 24.2CFI 3.180 1 0.075 72.5 11.2 31.7CFF 1.900 1 0.168 77.5 10.0 32.5CFO+ CFI 9.356 2

23、 0.009 52.5 8.7 23.3CFO+CFF 9.144 2 0.010 55.0 8.7 24.2CFI+CFF 3.189 2 0.203 72.5 12.5 32.5CFO+CFI+CFF 9.521 3 0.023 55.0 8.7 24.26示在会计比率模型的基础上同时加入 2 个或 3 个现金流量变量。表 4 给出现金流量增量信息含量的多变量 logit 回归结果及相应的误判率。由表 4 可知,财务困境前 1 年在会计比率模型的基础上加入经营性现金流量变量可使总误判率由 10%显著降至 7.5%(p=0.002) xi,主要归因于 类误判率由 25%降至 17.5%,而对

24、三类现金流量进行任意组合后再加入会计比率模型均不能再降误判率。这说明经营性现金流量在应计制会计变量的基础上提供了增量预测信息。在财务困境前两年,我们发现在会计比率模型的基础上分别加入经营性现金流量和投资性现金流量均能显著提高 logit 模型的预测能力,总误判率分别下降 8.3%(p=0.021)和0.8%( p=0.075) 。考虑加入现金流量组合之后发现,同时加入经营性现金流量和投资性现金流量(CFO+CFI )可使模型的总误判率降至 23.3%(p =0.009) 。总之,无论在财务困境前 1 年还是前 2 年,经营性现金流量在会计比率的基础上均具有显著的增量信息含量,而在财务困境前 2

25、 年,投资性现金流量也具有增量信息含量,同时加入经营性现金流量和投资性现金流量可使模型总误判率降至最低。结论与启示本文选取 2003 年度 40 家财务困境样本和 80 家非财务困境样本,分别考察了现金流量信息在财务困境预测中的相对信息含量和增量信息含量,研究发现:(1)在我国上市公司陷入财务困境前 1 年,经营性现金流量的相对信息含量仅次于资产报酬率,其预测效率优于其他 5 个应计会计变量,而在财务困境前 2 年,经营性现金流量的相对信息含量仅次于资产周转率,因此经营性现金流量的相对信息含量具有一定的稳定性;(2)无论在财务困境前 1 年还是前 2 年,经营性现金流量在会计比率的基础上均具有

26、显著的增量信息含量,而在财务困境前 2 年,投资性现金流量也具有增量信息含量,同时加入经营性现金流量和投资性现金流量可使模型总误判率最低。本文的研究证实现金流量,特别是经营性现金流量与应计制会计变量相比,既具有相对信息含量,也具有增量信息含量。这为今后财务困境预测研究充分挖掘现金流量的预测价值提供了实证依据。(注:本文受国家自然科学基金项目(70372035)资助,主持人为厦门大学管理学院吴世农教授)注释i 若从 Fitzpartrick(1932)算起,则财务困境预测研究的历史又可往前推 34 年。ii Beaver 以“净收益+折旧+折耗+摊销”定义现金流量。iii 仅仅在财务困境前 2

27、年,现金流量/负债总额的误判率略高于资产报酬率。iv 资金流量是财务状况变动表采纳的基本概念。虽然此表已被现金流量表所替代,但资金流量概念依然存在,例如营运资金(本) 。v Lawson 现金流量等式的基本形式是“企业现金流量=债权人现金流量 +股东现金流量” 。Lawson 现金流量等式与 Helfert 资金流量模型的根本区别在于前者应用于企业估价,而后者主要被管理层用于经营分析。vi 考虑到我国上市公司编制现金流量表始于 1998 年,若选取 2003 年以前 ST 公司为样本,则无法直接获取财务困境前 4 年现金流量数据。vii 事实上,我国上市公司中以 ST 定义的财务困境企业占总体

28、的比例毕竟很低,本文选择的配对比例比传统的 1:1 配对更接近现实。viii 将销售净额替换为总资产或总负债,不影响本文的基本结论,故不作报告。ix 在没有任何预测信息的情况下,可以“幼稚”地判定所有公司均为非财务困境公司,这样按 1:2 的配对比例至少能得到 2/3 的预测精确度,即 33.3%的误判率。x 在财务困境前 1 年,经营性现金流量、资产报酬率、营运资本/总资产、资产周转率的误判率均低于财务困境前 2 年。虽然投资性现金流量和筹资性现金流量的误判率在财务困境7前一年反而高于财务困境前 2 年,但其估计参数在 t=1 和 t=2 均不显著。xi 此处 p 值对应于-2Log L,下

29、文相同。参考文献1.Altman, E. I., Sept. 1968, “Financial Ratios, Discrimininant Analysis and the Prediction of Corporate Bankruptcy”, Journal of Finance 23(4):589-610.2.Aziz, A., D. C. Emanuel and G. H. Lawson, 1988, “Bankruptcy Prediction- An Investigation of Cash Flow Based Model.” Journal of Management St

30、udies 25:419-437.3.Beaver, W. H., 1966, “Financial Ratios as Predictors of Failure.” Journal of Accounting Research (supplement):71-102.4.Blum, M., Spring 1974, “Failing Company Discrimininant Analysis.” Journal of Accounting Research 12:1-25.5.Casey, C. J. and N. J. Bartczak, 1984, “Cash Flow-Its Not the Bottom Line.” Harvard Business Review 62:61-66.

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报