ImageVerifierCode 换一换
格式:PPT , 页数:31 ,大小:925.50KB ,
资源ID:8428088      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-8428088.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学实验课件--建立数学模型.ppt)为本站会员(ysd1539)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数学实验课件--建立数学模型.ppt

1、第一章 建立数学模型,1.1 从现实对象到数学模型 1.2 数学建模的重要意义 1.3 数学建模示例 1.4 数学建模的方法和步骤 1.5 数学模型的特点和分类 1.6 怎样学习数学建模,玩具、照片、飞机、火箭模型 , 实物模型,水箱中的舰艇、风洞中的飞机 , 物理模型,地图、电路图、分子结构图 , 符号模型,模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物,模型集中反映了原型中人们需要的那一部分特征,1.1 从现实对象到数学模型,我们常见的模型,MCM PROBLEM B: Criminology In 1981 Peter Sutcliffe was conv

2、icted of thirteen murders and subjecting a number of other people to vicious attacks. One of the methods used to narrow the search for Mr. Sutcliffe was to find a “center of mass” of the locations of the attacks. In the end, the suspect happened to live in the same town predicted by this technique.

3、Since that time, a number of more sophisticated techniques have been developed to determine the “geographical profile” of a suspected serial criminal based on the locations of the crimes. Your team has been asked by a local police agency to develop a method to aid in their investigations of serial c

4、riminals. The approach that you develop should make use of at least two different schemes to generate a geographical profile.,You should develop a technique to combine the results of the different schemes and generate a useful prediction for law enforcement officers. The prediction should provide so

5、me kind of estimate or guidance about possible locations of the next crime based on the time and locations of the past crime scenes. If you make use of any other evidence in your estimate, you must provide specific details about how you incorporate the extra information. Your method should also prov

6、ide some kind of estimate about how reliable the estimate will be in a given situation, including appropriate warnings.,你碰到过的数学模型“航行问题”,用 x 表示船速,y 表示水速,列出方程:,答:船速每小时20千米/小时.,甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?,x =20 y =5,航行问题建立数学模型的基本步骤,作出简化假设(船速、水速为常数);,用符号表示有关量(x, y表示船速和水速);,用物理定律(

7、匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);,求解得到数学解答(x=20, y=5);,回答原问题(船速每小时20千米/小时)。,数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling),对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。,建立数学模型的全过程 (包括表述、求解、解释、检验等),数学模型,数学建模,1.2 数学建模的重要意义,电子计算机的出现及飞速发展;,数学以空前的广度和深度向一切领域渗透。,数学建模作为用数学方法解决实际问题的第一步, 越

8、来越受到人们的重视。,在一般工程技术领域数学建模仍然大有用武之地;,在高新技术领域数学建模几乎是必不可少的工具;,数学进入一些新领域,为数学建模开辟了许多处女地。,数学建模的具体应用,分析与设计,预报与决策,控制与优化,规划与管理,数学建模,计算机技术,知识经济,1.3 数学建模示例,1.3.1 椅子能在不平的地面上放稳吗,问题分析,模型假设,通常 三只脚着地,放稳 四只脚着地,四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;,地面高度连续变化,可视为数学上的连续曲面;,地面相对平坦,使椅子在任意位置至少三只脚同时着地。,模型构成,用数学语言把椅子位置和四只脚着地的关系表示出来,椅子位置,利

9、用正方形(椅脚连线)的对称性,用(对角线与x轴的夹角)表示椅子位置,四只脚着地,距离是的函数,四个距离(四只脚),A,C 两脚与地面距离之和 f(),B,D 两脚与地面距离之和 g(),两个距离,椅脚与地面距离为零,正方形ABCD 绕O点旋转,用数学语言把椅子位置和四只脚着地的关系表示出来,f() , g()是连续函数,对任意, f(), g()至少一个为0,数学问题,已知: f() , g()是连续函数 ;对任意, f() g()=0 ;且 g(0)=0, f(0) 0. 证明:存在0,使f(0) = g(0) = 0.,模型构成,地面为连续曲面,椅子在任意位置至少三只脚着地,模型求解,给出

10、一种简单、粗糙的证明方法,将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) 0 ,知f(/2)=0 , g(/2)0. 令h()= f()g(), 则h(0)0和h(/2)0. 由 f, g的连续性知 h为连续函数, 据连续函数的基本性质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() g()=0, 所以f(0) = g(0) = 0.,评注和思考,建模的关键 ,假设条件的本质与非本质,考察四脚呈长方形的椅子,和 f(), g()的确定,1.3.2 商人们怎样安全过河,问题(智力游戏), 3名商人 3名随从,随从们密约, 在河的任一岸, 一旦随从

11、的人数比商人多, 就杀人越货.,但是乘船渡河的方案由商人决定.商人们怎样才能安全过河?,问题分析,多步决策过程,决策 每一步(此岸到彼岸或彼岸到此岸)船上的人员,要求在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河.,模型构成,xk第k次渡河前此岸的商人数,yk第k次渡河前此岸的随从数,xk, yk=0,1,2,3;k=1,2, ,sk=(xk , yk)过程的状态,S=(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2,S 允许状态集合,uk第k次渡船上的商人数,vk第k次渡船上的随从数,dk=(uk , vk)决策,D=(u ,

12、v) u+v=1, 2 允许决策集合,uk, vk=0,1,2;k=1,2, ,sk+1=sk dk,+(-1)k,状态转移律,求dkD(k=1,2, n), 使skS, 并按转移律由 s1=(3,3)到达 sn+1=(0,0).,多步决策问题,模型求解,穷举法 编程上机,图解法,状态s=(x,y) 16个格点,允许决策 移动1或2格; k奇,左下移; k偶,右上移.,s1,sn+1,d1, ,d11给出安全渡河方案,评注和思考,规格化方法,易于推广,考虑4名商人各带一随从的情况,允许状态,S=(x , y) x=0, y=0,1,2,3;x=3, y=0,1,2,3; x=y=1,2,背景,

13、世界人口增长概况,中国人口增长概况,研究人口变化规律,控制人口过快增长,1.3.3 如何预报人口的增长,指数增长模型马尔萨斯提出 (1798),常用的计算公式,x(t) 时刻t的人口,基本假设 : 人口(相对)增长率 r 是常数,今年人口 x0, 年增长率 r,k年后人口,随着时间增加,人口按指数规律无限增长,指数增长模型的应用及局限性,与19世纪以前欧洲一些地区人口统计数据吻合,适用于19世纪后迁往加拿大的欧洲移民后代,可用于短期人口增长预测,不符合19世纪后多数地区人口增长规律,不能预测较长期的人口增长过程,19世纪后人口数据,阻滞增长模型(Logistic模型),人口增长到一定数量后,增

14、长率下降的原因:,资源、环境等因素对人口增长的阻滞作用,且阻滞作用随人口数量增加而变大,假设,r固有增长率(x很小时),xm人口容量(资源、环境能容纳的最大数量),x(t)S形曲线, x增加先快后慢,阻滞增长模型(Logistic模型),参数估计,用指数增长模型或阻滞增长模型作人口 预报,必须先估计模型参数 r 或 r, xm,利用统计数据用最小二乘法作拟合,例:美国人口数据(单位百万),专家估计,阻滞增长模型(Logistic模型),模型检验,用模型计算2000年美国人口,与实际数据比较,实际为281.4 (百万),模型应用预报美国2010年的人口,加入2000年人口数据后重新估计模型参数,

15、Logistic 模型在经济领域中的应用(如耐用消费品的售量),阻滞增长模型(Logistic模型),数学建模的基本方法,机理分析,测试分析,根据对客观事物特性的认识, 找出反映内部机理的数量规律,将对象看作“黑箱”,通过对量测数据的 统计分析,找出与数据拟合最好的模型,机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。,二者结合,用机理分析建立模型结构, 用测试分析确定模型参数,1.4 数学建模的方法和步骤,数学建模的一般步骤,模 型 准 备,了解实际背景,明确建模目的,搜集有关信息,掌握对象特征,形成一个 比较清晰 的问题,模 型 假 设

16、,针对问题特点和建模目的,作出合理的、简化的假设,在合理与简化之间作出折中,模 型 构 成,用数学的语言、符号描述问题,发挥想像力,使用类比法,尽量采用简单的数学工具,数学建模的一般步骤,模型 求解,各种数学方法、软件和计算机技术,如结果的误差分析、统计分析、 模型对数据的稳定性分析,模型 分析,模型 检验,与实际现象、数据比较, 检验模型的合理性、适用性,模型应用,数学建模的一般步骤,数学建模的全过程,现实对象的信息,数学模型,现实对象的解答,数学模型的解答,(归纳),(演绎),表述,求解,解释,验证,根据建模目的和信息将实际问题“翻译”成数学问题,选择适当的数学方法求得数学模型的解答,将数

17、学语言表述的解答“翻译”回实际对象,用现实对象的信息检验得到的解答,实践,现实世界,数学世界,1.5 数学模型的特点和分类,模型的逼真性和可行性,模型的渐进性,模型的强健性,模型的可转移性,模型的非预制性,模型的条理性,模型的技艺性,模型的局限性,数学模型的特点,数学模型的分类,应用领域,人口、交通、经济、生态 ,数学方法,初等数学、微分方程、规划、统计 ,表现特性,描述、优化、预报、决策 ,建模目的,了解程度,白箱,灰箱,黑箱,确定和随机,静态和动态,线性和非线性,离散和连续,1.6 怎样学习数学建模,数学建模与其说是一门技术,不如说是一门艺术,技术大致有章可循,艺术无法归纳成普遍适用的准则,想像力,洞察力,判断力,学习、分析、评价、改进别人作过的模型,亲自动手,认真作几个实际题目,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报