ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:79KB ,
资源ID:8137780      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-8137780.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(算法分析技巧与分析习题答案.doc)为本站会员(kpmy5893)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

算法分析技巧与分析习题答案.doc

1、Page 541.16(a) The minimum number of element comparisons performed by the algorithm is n 1.This minimum is achieved when the input A1n is already sorted in nondecreasing order.(b) The maximum number of element comparisons performed by the algorithm is(n 1)+( n 2)+ 2+1=n(n 1)/2. This maximum is achie

2、ved when the input A1n is already sorted in decreasing order.(c) The minimum number of element assignments performed by the algorithm is 0.This minimum is achieved when the input A1n is already sorted in nondecreasing order.(d) The maximum number of element assignments performed by the algorithm is3

3、(n 1)+( n 2)+ 2+1=3n(n 1)/2.This maximum is achieved when the input A1n is already sorted in decreasing order.(e) The running time of Algorithm BUBBLESORT is (n2) in terms of the -notation, and (n) in terms of the -notation. (f)The running time cannot be expressed in terms of -notation, because the

4、running time ranges from the linear to quadratic.Page 992.16(a)On the one hand , j=1n jlog j j=1n nlog nn 2 log n.On the other hand, j=1n jlog j j= n/2 n n/2log n/2n/2 n/2log n/2(n-1)n /4log(n/2).Hence, j=1n jlog j= (n 2logn).(b)Let f(x)=x log x (x1). Since f(x) is an increasing function,we have j=1

5、n jlog j 1n+1 x log xdx(2(n+1) 2 ln(n+1)-(n+1)2+1) / (4ln2).Also, j=1n jlog j= j=2n jlog j 1n x log xdx(2 n2 lnn-n2+1) / (4ln2).Thus,有 j=1n jlog j= (n 2lnn)= (n 2logn).2.18(a) The characteristic equation isx=3.Thus, f(n)=c3n (n10) ,where c is determined by the initial value of the sequence : f(0).So

6、lving the equation f(0)=5=c, we obtain c=5.It follows that f(n)=53n (n10).(b) The characteristic equation isx=2.Thus,f(n)=c 2n (n10) ,where c is determined by the initial value of the sequence : f(0).Solving the equation f(0)=2=c, we obtain c=2.It follows that f(n)=2n+1 (n10).2.19(a) The characteris

7、tic equation is x2-5x +6=0, and hence x1=2 and x2=3.Thus, the solution to the recurrence is 于是, f(n)= c12n + c23n (n10) .To find the values of c1 and c2, we solve the two simultaneous equations:f(0)=1= c1 + c2 and f(1)=0=2c1 + 3c2.Solving the two simultaneous equations, we obtain c1=3 and c2 = -2. I

8、t follows thatf(n)=32n-23n (n10).(b) The characteristic equation is x2-4x +4=0, and hence x1=x2=2.Thus, the solution to the recurrence is 于是, f(n)= c12n + c2n 2n (n10).To find the values of c1 and c2, we solve the two simultaneous equations:f(0)=6= c1 and f(1)=8=2c1 +2c2.Solving the two simultaneous

9、 equations, we obtain c1=6 and c2 = -2. It follows thatf(n)=32n+1-n2n+1 (n10).2.20(a) f(n)= f(n-1)+ n2= f(n-2)+(n-1)2+n2= f(0)+12+22+(n-1)2+n2=0+12+22+(n-1)2+n2=n(n+1)(2n+1)/6 (n0).(b) Let f(n)= 2ng(n)(g(0)=f (0)=1). Then,2ng(n)= 22n-1g(n-1)+n,which simplifies tog(n)=g(n-1)+n2-n ,whose solution is g

10、(n) = i=1n i2-i +1= 2-(n+2)/2n+1=3-(n+2)/2n (n0).Hence, f(n)= 32n-n-2 (n0).(c) Let f(n)=3ng(n)(g(0)=f (0)=3). Then,3ng(n)=33n-1g(n-1)+ 2n,which simplifies tog(n)=g(n-1)+(2/3)n ,whose solution isg(n) = g(0)+ i=1n(2/3) i=3+ i=1n(2/3) i=5-2(2/3) n (n0).Hence, f(n)= 352n3n-n-22n+1 (n0).Page 156-1585.8so

11、lution: First, we note that the time complexity of RADIX is (kn), where n is the number of elements in array A, and k is the maximum size among elements in A. Thus,(1) when array A consists of n positive integers in the interval 1n, we can conclude that k=O(logn) and the time complexity can be expre

12、ssed as O(nlogn) in terms of n.(2) when array A consists of n positive integers in the interval 1 n2, we can conclude that k=O(logn) and the time complexity can be expressed as O(nlogn) in terms of n.(3) when array A consists of n positive integers in the interval 1 2n, we can conclude that k=O(n) a

13、nd the time complexity can be expressed as O(n2) in terms of n.5.9 solution:Since A1n is an array of positive integers in the interval 1 n!, it follows that k=O(nlog n) and the time complexity of RADIX is O(n2logn). Considering the time complexity of BOTTOMUPSORT is (nlogn), it is very likely that B

14、OTTOMUPSORT is faster.5.23solution:The only modification is to change “for j1 to n” to “for jn to 1 step -1” in Step 3 of Procedure perm2 in Algorithm PERMUTATIONS2 . 5.31disproof:Take the following instance as a counterexample: n=4, A1n=1,2,3,4. Obviously, if we run Algorithm MAJORITY on this insta

15、nce, then in step 7 of Procedure candidate j=n and count=0, but c=4 isnt the majority element.Exercise 66.39解答:当序列中的元素都相同时,每次执行算法 SPLIT,仅出现一次元素交换,即将序列的第一个元素与最后一个元素交换,且划分元素的新位置为该序列的最后一个位置。因此,在元素均相同的数组 A1n上,算法 QUICKSORT 的执行特点为:每次划分后只剩下一个非空子序列未处理的。第一次划分后剩下 A1n-1未处理,第二次划分后剩下 A1n-2未处理,第 n-1 次划分后剩下 A1(已有序

16、) 。在该实例上,算法的执行时间为:(n-1)+(n-2)+2+1=(n2),属于最坏的情况。且最后所得结果中各元素顺序如下:A2,A3,A4,An-1,A1(这里,Ai表示输入时的第 i 个元素,i=1,2,n) 。6.44解答:因为,(a+b)(c+d)=ac+ad+bc+bd,所以有,xy=(ac-bd)+(a+b)(c+d)-ac-bd)i.由此可见,这样计算 xy 只需要 3 次乘法。Exercise 7 (Page 220-223)7.5. 程序运行结果如下:Please input the string A: xzyzzyxPlease input the string B: z

17、xyyzxzThe length of a longest common subsequence of A and B is: 4A longest subsequence of A and B is: zyyx7.11. 程序运行结果如下:Please input the number of matrices: 5Please input r1N+1: 2 3 6 4 2 7The minimum number of scalar multiplications is: 124An optimal order is: (M1(M2(M3M4)M57.15. 程序运行结果如下:Please i

18、nput the number of vertices in graph G: 4Please input the cost matrix of G: 0 7 1 6 0 9 4 4 0 21 0Matrix D0:0 7 1 6 0 9 4 4 0 21 0Matrix D1:0 7 1 6 0 9 4 4 0 21 8 2 0Matrix D2:0 7 1 6 0 9 4 4 0 21 8 2 0Matrix D3:0 5 1 313 0 9 114 4 0 21 6 2 0Matrix D4:0 5 1 312 0 9 113 4 0 21 6 2 07.22. 程序运行结果如下:Ple

19、ase input the number of items: 5Please input the values of all these items P1N: 4 6 7 9 10Please input the sizes of all these items W1N: 3 5 7 8 9Please input the capacity of the knapsack M: 22V0N0M:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 40 0 0 4 4 6

20、 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 100 0 0 4 4 6 6 7 10 10 11 11 13 13 13 17 17 17 17 17 17 17 170 0 0 4 4 6 6 7 10 10 11 13 13 15 15 17 19 19 20 20 22 22 220 0 0 4 4 6 6 7 10 10 11 13 14 15 16 17 19 20 20 21 23 23 25The maximum value is: 25An optimal solution is: 0 1 0 1 1Exercise 88.13

21、解答:计算过程如下表所示。迭代次数 集合 X 中的元素 1 2 3 4 5 6 最短路径初始化1234511,31,3,21,3,2,51,3,2,5,41,3,2,5,4,60 9 4 0 8 4 17 0 8 4 20 13 0 8 4 16 13 280 8 4 16 13 180 8 4 16 13 18131321325132541325468.25解答:算法 Prim 的时间复杂度为 (n2), 算法 Kruskal 的时间复杂度为 (mlogm) 。当 m=O(n1.99)时,Kruskal 算法的时间复杂度为 (n 1.99logn)。由于n1.99logn / n2 0(n) ,所以,算法 Kruskal 效率要高。此时应选择算法 Kruskal。8.31解:构造哈夫曼树如下。0 10 10 01 138f:9a:716 22e:12b: 5 5c: 3 d:2610由此可得到一种最优的编码方案为:a: 00, b: 100, c: 1010, d: 1011 , e: 11, f: 01。

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报