ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:611KB ,
资源ID:7810720      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-7810720.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(物理课件.doc)为本站会员(scg750829)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

物理课件.doc

1、力 学 讲 义(第五章 角动量(动量矩) 、关于对称性)使用教材:漆安慎,力学主讲教师:侯登录授课对象:2004 级物理本科(一年级)2004 年 9 月5-2第五章 角动量(动量矩) 、关于对称性Angular momentum, symmetry本章提要: 5.1 质点角动量 Angular momentum of a Particle;5.2 质点组的角动量定理 Theorem of Angular Momentum of a System of Particles 及守恒定律;5.3 质点组对其质心的角动量定理及守恒定律;5.4 对称性、对称性和守恒定律(可自阅) ;5.5 经典力学适

2、用范围-宏观、低速本章重点:质点组的角动量定理及守恒定律本章难点:质点组对其质心的角动量定理及守恒定律课时安排:本章学时 6= 5.1 质点角动量 1;5.2 质点组的角动量定理及守恒定律 2;5.3 质点组对其质心的角动量定理及守恒定律 2;5.4 对称性、对称性和守恒定律(可自阅)0.5;5.5 经典力学适用范围-宏观、低速 0.5;讲学方式:讲授为主,自学为辅,由于与中学相差甚多,详细讲习题作业: 讲了力、动量、能量、功,另一个重要物理量是角动量。近代物理中作用极大,其他类动量、能量是另一个重要物理量。物理学中没有角动量,问题不易解决。在天体运动、电子绕核运转,在有些运动中动量、能量不守

3、恒,角动量可能是守恒的(直升飞机的尾翼、卫星的运动) 。开普勒第一定律:行星沿椭圆轨道绕日运转,日在一焦点上;第二定律:行星绕日运转中面积速度恒定;第三定律: CaT32/(卫星绕地,行星绕日,电子绕核)5.1 质点角动量一. 质点角动量 Angular momentum of a Particle1. 开普勒认真研究弟谷的观测资料,发现的行星运动三定律之第二定律讲行星绕日运行,以日为中心的位置矢量在相等时间内扫过的面积相等,或称面积速度为恒定。矢径 在 内扫过的面积为 ,面积速度即单位时间内 扫过面积为rdt |21| dtvrrr,而 垂直纸面向外。故称 为面积速度矢量: 即面积速度 是恒

4、|21v v21矢量。2. 定义质点对参考点的角动量矢量 :L5-3(1) , 是位置矢量, 是质点动量,都在 平面内,则 与 、vmrPLPXYOLr成右手关系,称 是质点对 点角动量,沿 轴。POZ例: * 水平匀速圆周运动: 是恒矢量;L* 竖直平面内的圆周运动, 向外,显然 不是恒矢量。如果 反向,则 垂直纸面向里;LP* 平行 轴的匀速直线运动, 是变的,但是 , , 是 到直YrvmrlmvrLsinO线距,故 恒定。注意 是 之夹角。 单位: 。LPr12skg(2)若 方向大小都不变,即恒矢量,则 , 守恒。0dtL(3)一般地说, , 为位矢,FramvtrvmtvrdtL

5、)(为质点受的合力。 是力矩,也是右手关系。FF二. 力对参照点的力矩 torque:质点对参照点的位置矢量和.质点受力 的矢量积 ,方向为右手关系,大小为Fr,单位: ,质点受几个力,则 ,sinr牛 顿米 iir单位: , 是 之夹角。2kgmFr三. 质点对参考点的角动量定理及角动量守恒定律 ,是力矩的冲量矩; , 是力的冲量Ldt dtP,称 为角动量定理类比 P88、P 63(3.3.3)的动量定理rvt)( tL,注意方向关系。显然如果 = 0,则 , 为恒矢量,即为质点对参考点的角动量dtPFdt守恒定律。开普勒行星第二定律说 ,是恒矢量,角动量守恒,说明行星运行中受的力的力矩恒

6、为vr210,即受沿径向的力-行星受太阳引力沿 反方向-万有引力总是逆 方向。r开普勒(1571-1630 ) ;牛顿( 1643-1727)四. 质点对轴的角动量定理及守恒定律对点的角动量 ,其方向较任意, 、 方向可任意。若对过 点的 轴而言,对 轴角动量LrvOZ则为 在 轴的分量,角动量定理记为 , ,则 守恒。ZdtLzz0zL1. 关于 :取垂直 轴的平面(平行 的平面) ,把 和 都沿垂直 轴和平行 轴方向zXYOrFZ分解,5-4,zFrFrFrFr / )()(说明:式中第一项为 0;第二、三项垂直于 z 轴,无 z 轴分量;第四项沿 z 轴为 |或z( 之 分量 为 、 之

7、垂直 分量之叉积) , 是 和 的夹角。作用于sinzzz 点的力对 轴的力矩 和轴上点 的选取无关。对轴上不同参考点, 的位矢 不同,但 是PZOPrr一样的, 不变;z(1) 如果 、 本已都垂直 轴,即同在垂直 的平面内,则 ;rFZzsinFz(2) 点(同一个点)受几个力作用: si合rri对同一个点,合力的力矩等力矩的和。2. 关于 ,质点对轴的角动量定理:zL(质点合力的矩或力矩的和一样,因 只有一个;质点组则不同)r如 ,有 。zsinPrzz)( 如果 、 都已在垂直 的平面内, 。rPiLz* 、 之间有质点对 轴的角动量定理, ;显然 = 0, 不变,即质点对 轴角动zL

8、ZzzLdtzzLZ量守恒。例 1(P 215、P 153):讨论 粒子散射。带两个正电荷质量为 的 粒子以 从无穷远接近带正电荷 ( 0)原子核m0ve( ) ,瞄准距 ,求 可达与 之最近距 。MmbMd解:瞄准距 即平行 过 、 的二直线间距。 粒子散射中略去重力,只受核的静电力,沿b0vd方向: ,显然 对 点的力矩 ,故 对 的角动量守恒,rrZeF2410O0FrO, 即 -(1) ,vL0 dmvbL0粒子散射中略去重力后,能量守恒,取 为静电势能零点, , ,故在无r0r0pE穷远和最近处,有: -(2) ,将(1)代入(2)式, dZevm0220411有: -(3) , 2

9、0202mvdb即 ,4202mvZed取 0,则 , 2/120204bmvZe)( 5-5显然,如果取 ,即对心碰撞时, ,0b20min4vZed或直接取 ,由(3) ,得 , 有 ,近似为核半径上限。v0220120min4ved例 2(5.1.1):卫星近地点距地面 ,远地点距地面 ,速度 ,求近地点速度 。近、远点 和 垂直。1h2h2v1rv解: ,则21vRv)()( 11R代入数据 。86.097543670825.2 质点组的角动量定理及守恒定律Theorem of Angular Momentum of a System of Particles一. 质点组对参考点 的角

10、动量定理及守恒定律:O, 是 对 的位矢,取矢量和: ,前有质点 对 的iivmrLri iiivmrLiO角动量定理 ,质点组有组外力,又有组内质点间互作用力内力,对 , ,dtii i 内外 iiiF故,取和:dtLFr iiiiii 内外内外 )( , (其中, )Ldtiiiii 内外内外 )( 0内i以二质点间互作用引力说明 。质点 1、2,位矢 、 ,互作用力 ,0内i1r2211F, 和 共线。 21212112 FrFrFi )(内 r质点组角动量定理: 。dtLi外* 注意:质点组内力对动量定理、角动量定理都不计。* 质点组对参考点 的角动量的时间变化率等于外力对 点的力矩的

11、矢量和(各力的力矩和,不是OO合外力的矩;它区别于质点) ,此称质点组对 点的角动量定理。* 质点组对参考点 的角动量守恒定律:当 (外力矩之和为 0)时, 是恒矢量。0外iL二. 质点组对轴的角动量定理及守恒定律:简化为:各质点都处于垂直 轴的平面内运动,即 、 都垂直 轴。ZirivZ各外力的平行 轴的分量 的力矩分量都垂直 轴, 投影为 0,只计 分量。/外iFz外iF5-6。zziLdt外定理:质点组对 轴的角动量 的时间变化率等于质点组所受外力对 轴力矩之和。Zz Z守恒定律:如果质点组所受外力对 轴的力矩和恒为 0,则质点组对 轴角动量守恒。Z* 最简单情况:各质点都在垂直 轴的平

12、面内做圆周运动,则 和 垂直, ,iriv2/i。2iiz rmvrL例如,定滑轮转动、自行车轮定点转动。例 1(P 219、P 157):左盘、右砝码都为 ,初静止,距左盘 高有 ( )的胶泥自由落到盘上且粘hm住,求这时盘的速度(轮、绳质不计;绳不伸长,轴无摩擦) 。解:若依碰撞考虑,外力作用(重力、拉力)不可略去试用质点组对轴的角动量定理或守恒定律求解。* 选砝码 、盘泥 为质点组,坐标如图, 轴垂直向外。 和左盘刚接触时,m z,沿 轴,粘住后设以 沿 向下运动,右砝码亦以 但向上运动。有 ,大小相ghv20yvyvv等。* 在过程中,质点组受的外力:右砝码重力 、拉力 ;左盘和胶泥受

13、重力WT、拉力 ( ) 。泥和盘互作用为内力,不计。注意: 、 对 轴力矩相gW)( T z消;右砝码和左盘重力对 轴力矩相消;胶泥重力矩略去。系统对 轴合力矩为 0,对 轴角动量守z z恒。, 轴投影,且vmrrvmr )(0 v,则知 。RvR)( )( mgh2/用质点组对轴角动量守恒求得 的近似解。注意:划分质点组,建坐标系,分析外力矩,说明对点或对轴角动量守恒。5.3 质点组对其质心的角动量定理及守恒定律 建立质心为原点的坐标系 ,它与惯性系 各轴平行。质心系不一定是惯性系,ZYXCXYZOca可不为 0,可能有惯性力 ,在相对质心的角动量定理中应否考虑惯性力的力矩呢(牛顿ciiam

14、f*定律中要计 )?*f在 系中,各质点位置矢量 ,则 ,ZYXCir dtLamrciiii )(内外 * 各内力对质心的力矩和为 0: ,例如见上节所证。内i5-7* 惯性力的力矩和亦为 0: ,即3.8 在质心系求得质心坐标0cicii aMrmar)(为 0。*故质心系角动量定理形式仍同惯性系。(惯性力力矩和为 0,内力力矩和为 0) ;dtLi外*外力矩为 0,则角动量守恒。借此解释,运动员翻跟斗,猫从空中落下时伸展身体, (质心不变)控制旋转速度,因这时外力只有重力,但它对质心力矩为 0,故角动量(对质心)守恒。*3.8 讲质点组对质心的动量定理、对质心的质心坐标为 ;对质心总动量

15、为 0;4.8 讲质心参照系、O柯尼希定理 、不计惯性力的功;5.3 讲质心系惯性力总力矩为 0、内力221iCk vmvE总力矩为 0;7.2 讲刚体质心;7.5 讲刚体平面运动(质心轴) 。5.4 对称性、对称性和守恒定律(可自阅)一. 对称性:经一种操作(转动、平移、变换)回到自身自然界中存在对称性问题,人体左右对称性、镜反射的反射对称、五角星、圆、圆球、椭球、花瓣的中心对称或绕轴转动对称。植树三米一棵是空间周期性,亦称平移对称性。晶体中粒子周期性排列亦是平移对称性。经一种操作回到自身。推而广之,质点加速度经伽俐略变换(惯性系之间) (称变换为操作) ,加速度不变。说质点加速度对伽俐略变

16、换(操作)是具有对称性;牛顿定律形式亦然。质点动量对伽俐略坐标变换(惯性系之间变换)没有不变性,即没有对称性,但当合外力为 0 时,无论对这个惯性系或变换后另一惯性系动量守恒是成立的。故动量守恒定律对伽俐略变换具有对称性(不变性) 。数学中的群论,在物理上有广泛应用,它说明了对称性和物理的守恒定律之直接相关。二. 对称性和守恒律:人们认识到:从自然界的每一对称性都可得一守恒律。每一守恒律都包含了一种对称性。(1) 机械能对空间坐标平移(运动)对称性与动量守恒(不变性) ;(2) 机械能对空间坐标转动(运动)对称性与角动量守恒(不变性) ;(3) 机械能对时间平移(运动)对称性与机械能守恒。5.

17、5 经典力学适用范围-宏观、低速牛顿力学三定律,万有引力定律适用于:(1) 低速 , 和 可比时,一般为零点几 。则让位于相对论力学,经典是相对论的极vCC限。5-8(2) 宏观物体运动定律,在量子现象中不可用。特征量是 ,这是:能量 时间、动量 长度(角动量量纲) 。秒焦 耳 341062.h经典力学适用范围:经典力学是物体有关量远超过 ,则在可视 时,则为经典力学。有关量h0与可比,或小于 时,则用量子理论了。hh11 RotationAngular Position To describe the rotation of a rigid body about a fixed axis,

18、called the rotation axis, we assume a reference line is fixed in the body, perpendicular to that axis and rotating with the body. We measure the angular position of this line relative to a fixed direction. When is measured in radians, (radian measure), (11-1)rswhere s is the arc length of a circular

19、 path of radius r and angle . Radian measure is related to angle measure in revolutions and degrees by1 rev = rad. (11-2)2360Angular Displacement A body that rotates about a rotation axis, changing its angular position from 1 to 2, undergoes an angular displacement , (11-4)1where is positive for cou

20、nterclockwise rotation and negative for clockwise rotionAngular Velocity and Speed If a body rotates through an angular displacement in a time interval , tits average angular velocity isvg. (11-5)tavgThe (instantaneous) angular velocity of the body is. (11-6)dtBoth and are vectors, with directions g

21、iven by the right-hand rule of Fig. 11-6. They are positive avgfor counterclockwise rotation and negative for clockwise rotation. The magnitude of the bodys angular velocity is the angular speed.Angular Acceleration If the angular velocity of a body changes from 1 to 2 in a time interval t = t2 t1,

22、the average angular acceleration avg of the body is. (11-7)ttavg12The (instantaneous) angular acceleration of a body is. (11-8)dt5-9Both and are vectors.avgThe Kinematic Equations for Constant Angular Acceleration Constant angular acceleration ( = constant) is an important special case of rotational

23、 motion. The appropriate kinematic equations, given in Table 11-1, are, (11-12)t0, (11-13)21, (11-14)(020, (11-15)t. (11-16)201tLinear and Angular Variables Related A point in a rigid rotating body, at a perpendicular distance r from the rotation axis, moves in a circle with radius r. If the body ro

24、tates through an angle , the point moves along an arc with length s given by s = r (radian measure), (11-17)where is in radians.The linear velocity of the point is tangent to the circle; the points linear speed v is given byvv = r (radian measure), (11-18)where is the angular speed (in radians per s

25、econd) of the body.The linear acceleration of the point has both tangential and radial components. The tangential component ais(radian measure), (11-22)ratwhere is the magnitude of the angular acceleration (in radians per second-squared) of the body. The radial component of is(radian measure). (11-2

26、3)rvar2If the point moves in uniform circular motion, the period T of the motion for the point and the body is(radian measure). (11-19, 11-20)vTRotational Kinetic Energy and Rotational Inertia The kinetic energy K of a rigid body rotating about a fixed axis is given by(radian measure). (11-27)21IKin

27、 which I is the rotational inertia of the body, defined as(11-26)2irmfor a system of discrete particles and as(11-28)dI25-10for a body with continuously distributed mass. The r and ri in these expressions represent the perpendicular distance from the axis of rotation to each mass element in the body

28、.The parallel-Axis Theorem The parallel-axis theorem relates the rotational inertia I of a body about any axis to that of the same body about a parallel axis through the center of mass: . (11-29)2MhIcomHere h is the perpendicular distance between the two axes.Toque Torque is a turning or twisting ac

29、tion on a body about a rotation axis due to a force . If is Fexerted at a point given by the position vector relative to the axis, then the magnitude of the torque is r, (11-32, 11-33, 11-31)sinrFrtwhere Ft is the component of perpendicular to , and is the angle between and . The quantity rris the p

30、erpendicular distance between the rotation axis and an extended line running through the r Fvector. This line is called the line of action of , and is called the moment arm of . Similarly, r is the FrFmoment arm of Ft.The SI unit of torque is the Newton-meter ( ). A torque is positive if it tends to

31、 rotate a body at rest mNcounterclockwise and negative if it tends to rotate the body in the clockwise direction.Newtons Second Law in Angular Form The rotational analog of Newtons second law is, (11-37)Inetwhere is the net torque acting on a particle or rigid body, I is the rotational inertia of th

32、e particle or tbody about the rotation axis, and is the resulting angular acceleration about that axis.Work and Rotational Kinetic Energy The equations used for calculating work and power in rotational motion correspond to equations used for translational motion and are(11-45)fidWand . (11-47)tPWhen

33、 is constant, Eq. 11-45 reduces to . (11-46)(ifThe form of the work-kinetic energy theorem used for rotating bodies is. (11-44)WIKifif 2215-1112 Rolling, Torque, and Angular MomentumRolling Bodies For a wheel of radius R that is rolling smoothly (no sliding), (12-2)Rvcomwhere vcom is the linear spee

34、d of the wheels center and is the angular speed of the wheel about its center. The wheel may also be viewed as rotating instantaneously about the point P of the “road” that is in contact with the wheel. The angular speed of the wheel about this point is the same as the angular speed of the wheel abo

35、ut its center. The rolling wheel has kinetic energy, (12-5)221comcomMvIKwhere Icom is the rotational moment of the wheel about its center and M is the mass of the wheel. If the wheel is being accelerated but is still rolling smoothly, the acceleration of the center of mass is related to the comaangu

36、lar acceleration about the center with . (12-6)RacomIf the wheel rolls smoothly down a ramp of angle , its acceleration along an x axis extending up the ramp is. (12-10)2, /1sinMRIgacomxcomTorque as a Vector In three dimensions, torque is a vector quantity defined relative to a fixed point (usually

37、an origin); it is , (12-!4)Frwhere is a force applied to a particle and is a position vector locating the particle relative to the fixed rpoint (or origin). The magnitude of is given by, (12-15, 12-16, 12-17)rrsinwhere is the angle between and , is the component of perpendicular to , and is the FrFr

38、moment arm of . The direction of is given by the right-hand rule for cross products.Angular momentum of a Particle The angular momentum of a particle with linear momentum , mass pm, and linear velocity is a vector quantity defined relative to a fixed point (usually an origin); it is v. (12-18)(rprTh

39、e magnitude of is given by(12-19)sinrv5-12(12-20)rmvp, (12-21)vwhere is the angle between and , and are the components of and perpendicular to , rprpvrand is the perpendicular distance between the fixed point and the extension of . The direction of is r given by the right-hand rule for cross product

40、s.Newtons Second Law in Angular Form Newtons second law for a particle can be written in angular form as, (12-23)dtnetwhere is the net torque acting on the particle, and is the angular momentum of the Angular Momentum of a System of Particles The angular momentum of a system of particles is the Lve

41、ctor sum of the angular momenta of the individual particles:. (12-26)niL121.The time rate of change of this angular momentum is equal to the net external torque on the system (the vector sum of the torques due to interactions of the particles of the system with particles external to the system):(sys

42、tem of particles). (12-29)dtLnetAngular Momentum of a Rigid Body For a rigid body rotating about a fixed axis, the component of its angular momentum parallel to the rotation axis is(rigid body, fixed axis). (12-31)IConservation of Angular Momentum The angular momentum of a system remains constant if

43、 the net Lexternal torque acting on the system is zero:constant (isolated system) (12-32)aLor (isolated system). (12-33) fiThis is the law of conservation of angular momentum. It is one of the fundamental conservation laws of nature, having been verified even in situations (involving high-speed particles or subatomic dimensions) in which Newtons laws are not applicable.

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报