1、I毕 业 设 计 ( 论 文 )题目 电子万年历的设计与制作学生姓名 唐兴 学 号 37教学院系 电气与电子工程系专业班次 电子测量技术与仪器 2011 级11251指导教师 胡沁春 职 称 副教授单 位 成都工业学院完成日期 2014 年 05 月 20 日I摘 要本文介绍了基于 AT89S52 单片机的多功能电子万年历的硬件结构和软硬件设计方法。本 设 计 由 数 据 显 示 模 块 、 温 度 采 集 模 块 、 时 间 处 理 模 块 和 调 整 设 置 模 块四 个 模 块 组 成 。 系统以 AT89S52 单片机为控制器,以串行时钟日历芯片 DS1302记录日历和时间,它可以对年
2、、月、日、时、分、秒进行计时,还具有闰年补偿等多种功能。温 度 采 集 选 用 DS18B20 芯 片 , 万年历采用直观的数字显示,数据显示采用 1602A 液晶显示模块,可以在 LCD 上同时显示年、月、日、周日、时、分、秒,还具有时间校准等功能。此万年历具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,具有广阔的市场前景。关 键 字 : 万 年 历 ;温 度 计 ;液 晶 显 示IIABSTRACTThis paper introduces the based on AT89S52 multi-function electronic calendar of the hard
3、ware structure and software and hardware design method. This design by data display module, temperature acquisition module, time processing module and set module four modules. With AT89S52 single-chip microcomputer system for the controller to serial clock calendar chip DS1302 record calendar and ti
4、me, it can be to date and time, minutes and seconds for the time, also has a leap year compensation and other functions. Temperature gathering choose DS18B20 chip, calendar by using object digital display, data showed that the 1602 A liquid crystal display module, can be in the LCD shows at the same
5、 time year, month, day, Sunday, when, minutes and seconds, still have time calibration etc. Function. This calendar has read the convenient, direct display, functional diversity, simple circuit, low cost, and many other advantages, has a broad market prospect. Key words: Perpetual Calendar;thermomet
6、er;LCD displayIII目 录摘 要IAbstract.II第 1 章 绪论.11.1 课题研究的背景11.2 课题的研究目的与意义11.3 课题解决的主要内容2第 2 章 系统的方案设计与论述.32.1 概述 32.2 单片机芯片设计与论证 32.3 按键控制模块设计与论证32.4 时钟模块设计与论证 42.5 温度采集模块设计与论证 42.6 显示模块设计与论证 42.7 系统的机体设计.4 第 3 章 系统硬件的设计.53.1 概述 53.2 AT89S52 单片机 53.2.1 单片机的引脚功能 53.2.2 AT89S52 单片机与 MCS-51 完全兼容 .53.3 时钟
7、芯片 DS1302 接口设计与性能分析.53.3.1 DS1302 性能简介 .53.3.2 DS1302 接口电路设计 .53.4 温度芯片 DS18B20 接口设计与性能分析63.4.1 DS18B20 性能简介 63.4.2 DS18B20 接口电路设计 63.4.3 DS18B20 的工作时序 6成都工业学院毕业设计(论文)IV3.5 LCD 显示模块 63.5.1 LCM1602 的特性及使用说明 73.5.2 LCM1602 与 MCU 的接口电路 73.6 按键模块设计73.7 复位电路的设计7第 4 章 系统的软件设计.74.1 概述74.2 主程序流程图的设计74.3 程序设
8、计74.3.1 DS1302 读写程序设计 .84.3.2 温度程序设计8总结与展望.10参考文献.11致 谢13附录.141第 1 章 绪论随着科学的快速发展,时间的流逝,从观太阳、摆钟到现在电子钟,人类不断研究,不断创新纪录。目前,单片机技术的应用产品已经走进了千家万户。电子万年历的出现给人们的生活带来了诸多方便。随着微电子技术的高速发展,单片机在国民经济的个人领域得到了广泛的运用。单片机以体积小、功能全、性价比高等诸多优点,在工业控制、家用电器、通信设备、信息处理、尖端武器等各种测控领域的应用中独占鳌头,单片机开发技术已成为电子信息、电气、通信、自动化、机电一体化等专业技术人员必须掌握的
9、技术。单片机单芯片的微小体积和低的成本,可广泛地嵌入到如玩具、家用电器、机器人、仪器仪表、汽车电子系统、工业控制单元、办公自动化设备、金融电子系统、舰船、个人信息终端及通讯产品中,成为现代电子系统中最重要的智能化工具,于是基于单片机的醒目而时尚的电子版万年历顺应而生。基于单片机的电子万年历结合了时钟和日历的功能,将其二者融为一体,在显示时间的同时还能显示日期和年、月,它主要是通过单片机来读取时钟芯片的时间、日期,然后送给显示设备显示出来。而电子万年历作为电子类小设计不仅是市场上的宠儿,也是是单片机实验中一个很常用的题目。因为它的有很好的开放性和可发挥性,因此对作者的要求比较高,不仅考察了对单片
10、机的掌握能力更加强调了对单片机扩展的应用。而且在操作的设计上要力求简洁,功能上尽量齐全,显示界面也要出色。数字显示的日历钟已经越来越流行,特别是适合在家庭居室、办公室、大厅、会议室、车站和广场等使用,壁挂式 LED 数码管显示的日历钟逐渐受到人们的欢迎。LED 数字显示的日历钟显示清晰直观、走时准确、可以进行夜视,并且还可以扩展出多种功能。成都工业学院毕业设计(论文)2课题研究的背景随着科技的快速发展,时间的流逝,从观太阳、摆钟到现在电子钟,人类不断研究,不断创新纪录。它可以对年、月、日、时、分、秒进行计时,还具有闰年补偿等多种功能,而且 DS1302 的使用寿命长,误差小。对于数字电子万年历
11、采用直观的数字显示,可以同时显示年、月、日、时、分、秒和温度等信息,还具有时间校准等功能。该电路采用 AT89S52 单片机作为核心,功耗小,能在3V 的低压工作,电压可选用 35V 电压供电。此万年历具有读取方便、显示直观、功能多样、电路简洁、成本低廉等诸多优点,符合电子仪器仪表的发展趋势,具有广阔的市场前景。课题的研究目的与意义二十一世纪是数字化技术高速发展的时代,而单片机在数字化高速发展的时代扮演着极为重要的角色。电子万年历的开发与研究在信息化时代的今天亦是当务之急,因为它应用在学校、机关、企业、部队等单位礼堂、训练场地、教学室、公共场地等场合,可以说遍及人们生活的每一个角落。所以说电子
12、万年历的开发是国家之所需,社会之所需,人民之所需。由于社会对信息交换不断提高的要求及高新技术的逐步发展,促使电子万年历发展并且投入市场得到广泛应用课题解决的主要内容本课题所研究的电子万年历是单片机控制技术的一个具体应用,主要研究内容包括以下几个方面:(1)选用电子万年历芯片时,应重点考虑功能实在、使用方便、单片存储、低功耗、抗断电的器件。(2)根据选用的电子万年历芯片设计外围电路和单片机的接口电路(3)在硬件设计时,结构要尽量简单实用、易于实现,使系统电路尽量简单(4)根据硬件电路图,在开发板上完成器件的焊接。3(5)根据设计的硬件电路,编写控制 AT89S52 芯片的单片机程序。(6)通过编
13、程、编译、调试,把程序下载到单片机上运行,并实现本设计的功能。(7)在硬件电路和软件程序设计时,主要考虑提高人机界面的友好性,方便用户操作等因素。第 2 章 系统的方案设计与论述2.1 概述单片机电子万年历的制作有多种方法,可供选择的器件和运用的技术也有很多种。所以,系统的总体设计方案应在满足系统功能的前提下,充分考虑系统使用的环境,所选的结构要简单使用、易于实现,器件的选用着眼于合适的参数、稳定的性能、较低的功耗以及低廉的成本。系统的功能往往决定了系统采用的结构,经过成本,性能,功耗等多方面的考虑决定用三个 8 位 74LS164 串行接口外接 LED 显示器,RESPACK-8 对单片机A
14、T89S52 进行供电,时间芯片 DS1302 连接单片机 AT89S52。从而实现电子万年历的功能。按照系统设计的要求,初步确定系统由电源模块、时钟模块、显示模块、键盘接口模块、温度测量模块和闹钟模块共六个模块组成,电路系统构成框图如图2.1 所示图 2.1 硬件电路框图AT89S52电 源 模 块温 度 模 块独 立 按 键 时 钟 模 块显 示 模 块闹 钟 模 块成都工业学院毕业设计(论文)42.2 单片机芯片选取采用 AT89S52 芯片作为硬件核心,采用 Flash ROM,能以 3V 的超低电压工作,而且与 MCS-51 系列单片机完全兼容,该芯片内部存储器为 8KB ROM 存
15、储空间。同样具有 AT89S52 的功能,且具有在线编程可擦除技术,当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,不需要对芯片多次拔插,所以不会对芯片造成损坏。由于 AT89S52 内部具有 8KBROM 存储芯片并且支持 ISP 在线编程,因此采用AT89S52 作为主控芯片。2.3 按键控制模块设计与论证因系统中所需按键不多,为了释放更多的 CPU 占有时间,操作方便采用独立按键,查询简单,程序处理简单,可节省 CPU 资源2.4 时钟模块设计与论述采用 DS1302 时钟芯片实现时钟,DS1302 芯片是一种高性能的时钟芯片,可自动对秒、分、时、日、周、月、年
16、以及闰年补偿的年进行计数,而且精度高,位的 RAM 作为数据暂存区,工作电压 2.5V5.5V 范围内,2.5V 时耗电小于 300Ma52.5 温度采集模块设计与论证因为用 DS18B20 温度芯片,采用单总线访问,降低成本、降低制作难度且可节省单片机资源,所以采用数字式温度传感器 DS18B20,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现 9-12 位的数字值读数方式。2.6 显示模块设计与论证采用 LCD 的方法,具有硬件制作简单可直接与单片机接口,显示内容多,功耗小,成本低等优点,LCM1602 可显2.7 系统的机体设计 本设计由 数 据 显 示 模 块 、 温 度
17、采 集 模 块 、 时 间 处 理 模 块 和 调 整 设 置模 块 四 个 模 块 组 成 。 系 统 的 核 心 采 用 的 是 AT89S52 单 片 机 ; 数 据 显 示模 块 采 用 的 是 LCD 液 晶 显 示 ; 温 度 采 集 模 块 用 的 是 DS18b20 温 度 传感 器 , 该 传 感 器 所 采 用 的 是 单 总 线 传 输 , 内 部 带 有 A/D 转 换 , 用 起 来非 常 方 便 ; 时 间 处 理 模 块 用 的 是 DS1302 时 钟 芯 片 , 可以对年、月、日、时、分、秒进行计时,还具有闰年补偿等多种功能;调整设置模块共包括四个按键:模式选
18、择键、功能选择键、调整加按键、调整减按键。系统在正常工作时,LCD 液晶上第一行显示时分秒和温度,第二行显示年月日和星期,如果想要对时间进行调整,可以通过调整设置模块来实现。当按下 P3.3 键时,系统进入另一模式,此时液晶显示当前温度以及温度上限和下限,可以通过按键来设置温度上下限,当温度超过温度上限或低于温度下限,此时液晶会显示越限标志,如果想要退出该模式就在按一下 P3.3 即可。系统仿真图如图 2.2:成都工业学院毕业设计(论文)6图 2.2 系统仿真图7第 3 章 系统硬件的设计3.1 概述系统硬件的设计主要采用 AT89S52 单片机的可编程串口其内部的震荡电路产生时钟。用其 2
19、个定时器、计数器产生震荡周期。单片机中的六个中断系统中CPU 执行各种操作。另外同时使用时钟芯片 DS1302 能够向单片机提供包括秒、分、时、日、月、年等在内的实时时间信息。3.2 AT89S52 单片机3.2.1 单片机的引脚功能AT89S52 单片机有 40 个引脚Vcc:电源电压+5VGND:接地P0 口:P0 口是一组 8 位漏极开路型双向 I/O 口,也即地址/数据总线复用口。作为输出口用时,每位能驱动 8 个 TTL 逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低 8 位)和数据总线服用,在访问期间激活内部上拉电阻在
20、Flash编程时,P0 口接收指令字节,而在程序校验时,输出指令字节,校验时要求成都工业学院毕业设计(论文)8外接上拉电阻。P1 口:P1 口是一个带内部上拉电阻的 8 位双向 I/O,P1 的输出缓冲级可驱动(吸收或输出电流)4 个 TTL 逻辑门电路。对端口写“1” ,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。Flash 编程和程序校验期间,P1 接收低 8 位地址。P2 口:P2 口是一个带内部上拉电阻的 8 位双向 I/O,P2 的输出缓冲级可驱动(吸收或输出电流)4 个 TTL 逻辑门电路。对端口
21、写“1” ,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。在访问外部程序存储器或 16 位地址的外部数据存储器(例如执行 MOVXDPTR 指令)时,P2 口送出高 8 位地址数据。在访问 8 位地址的外部数据存储器(MOVX Ri 指令)时,P2 口线上的内容(也即特殊功能寄存器(SFR)区中 P2 寄存器的内容) ,在整个访问期间不改变。Flash 编程和程序校验期间,P2 亦接收低高位地址和其他控制信号。P3 口:P3 口是一组带内部上拉电阻的 8 位双向 I/O,P3 的输出缓冲级可驱动(吸收或输出电流
22、)4 个 TTL 逻辑门电路。对 P3 口写入“1”时,它们被内部的上拉电阻拉高并可作为输入端口。作输入端时,被外部拉低的 P3 口将用上拉电阻输出电流。P3 口除了作为一般的 I/O 口线外,更重要的用途是它的第二功能,见表 3.1 所示 P3 口还接收一些用于 Flash 闪速存储器编程和程序校验的控制信号。表 3.1 P3 口的第二功能图端口引脚 第二功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 INT0(外中断 0)P3.3 INT1(外中断 1)P3.4 T0(定时/计时器 0 外部输入)P3.5 T1(定时/计时器 1 外部输入)P3.6 WR(外部数据
23、存储器写选通)P3.7 RD(外部数据存储器读选通)RST:复位输入。当振荡器工作时,RST 引脚出现两个机器周期以上高电平将使单片机复位。WDT 溢出将使引脚输出高电平,设置 SFR AUXR 的DISRT0(地址 8EH)可打开或关闭该功能。DISRT0 位缺省为 RESET 输出高电平打开状态。ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存器允许)9输出脉冲用于锁存地址的低 8 位字节。即使不访问外部存储器,ALE 仍以时钟振荡频率的 1/6 输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个 ALE 脉冲。对
24、 Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG) 。PSEN:程序存储允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S52 由外部程序存储器取指令(或数据)时,每个机器周期两次 PSEN 有效,即输出两个脉冲。当访问外部数据存储器,没有两次有效的 PSEN 信号。EA/VPP:外部访问允许。欲使 CPU 仅访问外部程序存储器(地址为0000HFFFFH) ,EA 端必须保持低电平(接地) 。需要注意的是:如果加密位LB1 被编程,复位时内部会锁存 EA 端状态。如 EA 端为高电平,CPU 则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V
25、 的变成电压Vpp。XTAL1:振荡器反相放大器及内部时钟发生器的输入端。XTAL2:振荡器反相放大器的输出端。3.2.2 AT89S52 单片机与 MCS-51 完全兼容看门狗(WDT):WDT 是一种需要软件控制的复位方式。WDT 由 13 位计数器和特殊功能寄存器中的看门狗定时器复位存储器(WDTRST)构成。WDT 在默认情况下无法工作;为了激活WDT,用户必须往WDTRST 寄存器(地址:0A6H)中依次写入01EH 和0E1H。当WDT激活后,晶振工作,WDT在每个机器周期都会增加。WDT计时周期依赖于外部时钟频率。除了复位(硬件复位或WDT溢出复位),没有办法停止WDT工作。当W
26、DT溢出,它将驱动RSR引脚输出一个高电平。可编程串口(UART)在AT89S52中,UART 的操作与AT89S52 和AT89C52 一样。AT89S52系列单片机的串行通信口可以工作于同步和异步通信方式。当工作于异步方 式时,它具有全双工的操作功能,也就是说,它可以同时进行数据的发送和接收。串行口内的接收器采用的是双缓冲结构,能够在接收到的第一个字节从接收寄存器读走之前就开始接收第二个字节(当然,如果第二个字节接收完毕,而第一个字节仍然没有被读走,那将会丢掉一个字节)。串行口的发送和接收操作都是通过特殊功能寄存器中的数据缓冲寄存器SBUF进行的,但在SBUF的内部,接收寄存器和发送寄存器
27、在物理结构上是完全独立的。如果将数据写入SBUF,数据会被送入发送寄存器准备发送。如果执行SBUF指令,则读出的数据一定来自接收缓存器。因此,CPU对SBUF的读写,实际上是分别访问2个不同的寄存器。这2个寄存器的功能决不能混淆。成都工业学院毕业设计(论文)10振荡电路:AT89S52系列单片机的内部振荡器,由一个单极反相器组成。XTAL1反相器的输入,XTAL2为反相器的输出。可以利用它内部的振荡器产生时钟,只要XTAL1和XTAL2引脚上一个晶体及电容组成的并联谐振电路,便构成一个完整的振荡信号发生器,此方式称为内部方式。另一种方式由外部时钟源提供一个时钟信号到XTAL1端输入,而XTAL
28、2端浮空。在组成一个单片机应用系统时,多数采用这种方式,这种方式结构紧凑,成本低廉,可靠性高。在电路中,对电容C1和C2的值要求不是很严格,如果使用高质的晶振,则不管频率为多少,C1、C2通常都选择30pF。定时/计数器:AT89S52单片机内含有2个16位的定时器/计数器。当用于定时器方式时,定时器的输入来自内部时钟发生电路,每过一个机器周期,定时器加1,而一个机器周期包含有12个振荡周期,所以,定时器的技术频率为晶振频率的1/12,而计数频率最高为晶振频率的1/24。为了实现定时和计数功能,定时器中含有3种基本的寄存器:控制寄存器、方式寄存器和定时器/计数器。控制寄存器是一个8位的寄存器,
29、用于控制定时器的工作状态,方式寄存器是一个8位的寄存器,用于确定定时器的工作方式,定时器/计数器是16位的计数器,分为高字节和低字节两部分。RAM:高于7FH内部数据存储器的地址是8位的,也就是说其地址空间只有256字节,但内部RAM的寻址方式实际上可提供384字节。的直接地址访问同一个存储空间,高于7FH的间接地址访问另一个存储空间。这样,虽然高128字节区分与专用寄器 ,即特殊功能寄存器区的地址是重合的,但实际上它们是分开的。究竟访问哪一区,存是通过不同的寻址方式加以区分的。SFR:SFR是具有特殊功能的所有寄存器的集合,共含有22个不同寄存器,它们的地址分配在 80HFFH 中。虽然如此
30、,不是所有的单元都被特殊功能寄存器占用,未被占用的单元,其内容是不确定的。如对这些单元进行读操作,得到的是一些随机数,而写入则无效,所以在编程时不应该将数据写入这些未确定的地址单元中,特殊功能寄存器主要有累加器 ACC、B 寄存器、程序状态字寄存器 PSW、堆栈指针 SP、数据指针 DPTR、I/O 端口、串行口数据缓冲器SBUF、定时器寄存器、捕捉寄存器、控制寄存器。中断系统:AT89S52 单片机有 6 个中断源,中断系统主要由中断允许寄存器 IE、中断优先级寄存器 IP、优先级结构和一些逻辑门组成。IE 寄存器用于允许或禁止中断;IP 寄存器用于确定中断源的优先级别;优先级结构用于执行中
31、断源的优先排序;有关逻辑门用于输入中断请求信号。在整个中断响应过程中 CPU 所执行的操作步骤如下:11(1)完成当前指令的操作(2)将 PC 内容压入堆栈(3)保存当前的中断状态(4)阻止同级的中断请求(5)将中断程序入口地址送 PC 寄存器(6)执行中断服务程序(7)返回3.3 时钟芯片 DS1302 接口设计与性能分析3.3.1 DS1302 性能简介DS1302 是 Dallas 公司生产的一种实时时钟芯片。它通过串行方式与单片机进行数据传送,能够向单片机提供包括秒、分、时、日、月、年等在内的实时时间信息,并可对月末日期、闰年天数自动进行调整;它还拥有用于主电源和备份电源的双电源引脚,
32、在主电源关闭的情况下,也能保持时钟的连续运行。另外,它还能提供 31 字节的用于高速数据暂存的 RAM。DS1302 时钟芯片内主要包括移位寄存器、控制逻辑电路、振荡器。DS1302与单片机系统的数据传送依靠 RST,I/O,SCLK 三根端线即可完成。其工作过程可概括为:首先系统 RST 引脚驱动至高电平,然后在 SCLK 时钟脉冲的作用下,通过 I/O 引脚向 DS1302 输入地址/命令字节,随后再在 SCLK 时钟脉冲的配合下,从 I/O 引脚写入或读出相应的数据字节。因此,其与单片机之间的数据传送是十分容易实现的,DS1302 的引脚排列及内部结构图如图 3.1DS1302 引脚说明
33、:X1,X2 32.768kHz 晶振引脚GND 地线RST 复位端I/O 数据输入/输出端口SCLK 串行时钟端口 VCC1 慢速充电引脚 VCC2 电源引脚 成都工业学院毕业设计(论文)12图 3.1 DS1302 的引脚3.3.2 DS1302 接口电路设计时钟芯片 DS1302 的接口电路及工作原理:图 3.2 DS1302 与 MCU 接口电路图 3 为 DS1302 的接口电路,其中 Vcc1 为后备电源,Vcc2 为主电源。VCC1 在单电源与电池供电的系统中提供低电源并提供低功率的电池备份。VCC2 在双电源系统中提供主电源,在这种运用方式中 VCC1 连接到备份电源,以便在没
34、有主电源的情况下能保存时间信息以及数据。DS1302 由 VCC1 或 VCC2 两者中较大者供电。当 VCC2 大于 VCC1+0.2V 时,VCC2给 DS1302 供电。当 VCC2 小于 VCC1 时,DS1302 由 VCC1 供电。DS1302 在每次进行读、写程序前都必须初始化,先把 SCLK 端置 “0”,接着把RST 端置“1” ,最后才给予 SCLK 脉冲;读/写时序如下图 5 所示。表-1 为 DS1302 的控制字,此控制字的位 7 必须置 1,若为 0 则不能对 DS1302 进行读写数据。对于位6,若对时间进行读/写时,CK=0,对程序进行读/写时 RAM=1。位
35、1 至位 5 指操作单元的地址。位 0 是读/写操作位,进行读操作时,该位为 1;进行写操作时,该位为130。控制字节总是从最低位开始输入/输出的。表-2 为 DS1302 的日历、时间寄存器内容:“CH”是时钟暂停标志位,当该位为 1 时,时钟振荡器停止,DS1302 处于低功耗状态;当该位为 0 时,时钟开始运行。 “WP”是写保护位,在任何的对时钟和RAM 的写操作之前, “WP”必须为 0。当“WP”为 1 时,写保护位防止对任一寄存器的写操作。DS132 的控制字:DS1302 的控制字如表 3.2 所示。控制字节的高有效位(位 7)必须是逻辑 1,如果它为 0,则不能把数据写入 D
36、S1302 中,位 6 如果 0,则表示存取日历时钟数据,为 1 表示存取 RAM 数据;位 5 至位 1 指示操作单元的地址;最低有效位(位 0)如为 1 表示进行读操作,为 0 表示进行写操作。控制字节总是从最低位开始输出。表 3.2 DS1302 的控制字格式1 RAM/CK A4 A3 A2 A1 A0 RD/WR数据输入输出(I/O)在控制指令字输入后的下一个 SCLK 时钟的上升沿时,数据被写入 DS1302,数据输入从低位即位 0 开始。同样,在紧跟 8 位的控制指令字后的下一个 SCLK 脉冲的下降沿读出 DS1302 的数据,读出数据时从低位 0 位到高位 7。如下图 3.3
37、 所示。图 3.3 DS1302 读/写时序图DS1302 的寄存器Error!DS1302 有 12 个寄存器,其中有 7 个寄存器与日历、时钟相关,存放的数据位为 BCD码形式,其日历、时间寄存器及其控制字见表 3.3表 3.3 DS1302 的日历、时间寄存器写寄存器 读寄存器 Bit7 Bit6 Bit5 Bit7 Bit3 Bit2 Bit1 Bit0成都工业学院毕业设计(论文)1480H 81H CH 10 秒 秒82H 83H 10 分 分1084H 85H 12/Error!0Error!/PM时 时86H 87H 0 0 10 日 日88H 89H 0 0 0 10 月 月8
38、AH 8BH 0 0 0 0 0 星期8CH 8DH 10 年 年8EH 8FH WP 0 0 0 0 0 0 0此外,DS1302 还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与 RAM 相关的寄存器等。时钟突发寄存器可一次性顺序读写除充电寄存器外的所有寄存器内容。 DS1302 与 RAM 相关的寄存器分为两类:一类是单个 RAM 单元,共 31个,每个单元组态为一个 8 位的字节,其命令控制字为 C0HFDH,其中奇数为读操作,偶数为写操作;另一类为突发方式下的 RAM 寄存器,此方式下可一次性读写所有的 RAM 的 31 个字节,命令控制字为 FEH(写)、FFH(读)。3
39、.4 温度芯片 DS18B20 接口设计与性能分析3.4.1 DS18B20 性能简介DS18B20 温度传感器是美国 DALLAS 半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现 9-12 位的数字值读数方式。现场温度直接以“一线总线“的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持 3V5.5V 的电压范围,使系统设计更灵活、方便。其性能特点可归纳如下:1 独特的单线接口仅需要一个端口引脚进行通信;2
40、 测温范围在-55到 125,分辨率最大可达 0.0625;3 采用了 3 线制与单片机相连,减少了外部硬件电路;4 零待机功耗;5 可通过数据线供电,电压范围在 3.0V-5.5V;6 用户可定义的非易失性温度报警设置;7 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件; 158 负电压特性,电源极性接反时,温度计不会因发热烧毁,只是不能正常工作。DS18B20 工作原理DS18B20 的读写时序和测温原理与 DS1820 相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由 2s 减为 750ms。 DS18B20 测温原理如图 3.4 所示。图中低温度系
41、数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器 1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器 2 的脉冲输入。计数器 1 和温度寄存器被预置在55所对应的一个基数值。计数器 1 对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1 的预置值减到 0 时,温度寄存器的值将加 1,计数器 1 的预置将重新被装入,计数器 1 重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器 2计数到 0 时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图 3.4 中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器 1
42、 的预置值。LSB位置/清除增加计数器 1斜率累加器计数比较器温度寄存器减到0预置计数器 2 减到0停止预置低温度系数晶振高温度系数晶振图 3.4 DS18B20 测温原理3.4.2 DS18B20 接口电路设计如图 3.5 所示,该系统中采用数字式温度传感器 DS18B20,具有测量精度高,电路连接简单特点,此类传感器仅需要一条数据线进行数据传输,用 P3.7 与DS18B20 的 DQ 口连接,Vcc 接电源,GND 接地。 成都工业学院毕业设计(论文)16图 3.5 温度传感器 DS18B20 接口电路3.4.3 DS18B20 的工作时序复位时序图图 3.6 复位时序图读时序图17图
43、3.7 读时序图写时序图图 3.8 写时序图工作时序总线时序图 3.9 总线时序写周期时序成都工业学院毕业设计(论文)18图 3.10 写周期时序起始/停止时序图 3.11 起始/停止时序应答时序图 3.12 应答时序立即地址读时序19图 3.13 立即地址读时序3.5 LCD 显示模块3.5.1 LCM1602 的特性及使用说明LCM1602 的接口信号说明如表 3.4:表 3.4 LCM1602 的接口信号编号 引脚符号 功能说明 编号 引脚符号 功能说明1 VSS 电源地 9 D2 DATA I/O2 VDD 电源正极 10 D3 DATA I/O3 VL 液晶显示偏压信号 11 D4
44、DATA I/O4 RS 数据/命令选择端(H/L) 12 D5 DATA I/O5 R/W 读/写选择端(H/L) 13 D6 DATA I/O6 E 使能信号 14 D7 DATA I/O7 D0 DATA I/O 15 BLA 背光正极8 D1 DATA I/O 16 BLK 背光负极基本操作时序如下:1)读状态:RS=L,RW=H,E=H2)写指令:RS=L,RW=L,D0D7=指令码,E=高脉冲3)读数据:RS=H,RW=H,E=H4)写数据:RS=H,RW=L,D0D7=数据,E=高脉冲成都工业学院毕业设计(论文)20初始化设置显示模式设置如表 3.5:表 3.5 显示模式设置指令
45、码 功能0 0 1 1 1 0 0 0 设置 16*2 显示,5*7 点阵,8 位数据接口显示开/关及光标设置如表 6:表 3.6 显示开/关及光标设置指令码 功能0 0 0 0 1 D C BD=1 开显示;D=0 关显示C=1 显示光标;C=0 不显示光标B=1 光标闪烁;B=0 光标不显示0 0 0 0 0 1 N S N=1 当读或写一个字符后地址指针加一,且光标加一N=0 当读或写一个字符后地址指针减一,且光标减一S=1 当写一个字符,整屏显示左移(N=1)3.5.2 LCM1602 与 MCU 的接口电路LCD 的 D0D7 分别接单片机的的 P2 口,作为数据线,因为 P0 口内
46、部没有上拉电阻,所以外部另外加上 10K 的上拉电阻; P1.0P1.2 分别接 LCD的 RS、 RW、 E 三个控制管脚;RV1 用来调节 LCD 的显示灰度;BLK、BLA为背光的阴极和阳极,接上相应电平即点亮背光灯。3.6 按键模块设计本系统用到了 5 个按键,其中一个用作系统手动复位,另外 4 个采用独立按键,该种接法查询简单,程序处理简单,可节省 CPU 资源,按键电路如图3.14 所示,4 个独立按键分别与 AT89S52 的 P3.4、P3.5、P3.6、P3.7 接口相连。21图 3.14 按键电路对以上 4 个按键作简要说明:S4SET 键,S3UP 键,S2DOWN 键,
47、S5OUT/STOP 键。SET 键:按下 SET 键进入时间校准状态,按一下进入秒调整,两下分调整,依此类推可进行各年月日,时分秒以及星期的校准;UP 键:当 SET 键按下时, UP 进行 SET 选定项(如:小时)的加操作 ;DOWN 键:当 SET 键按下时, DOWN 进行 SET 选定项(如:小时)的减操作;OUT 键:当 OUT 键按下时,此键功能为退出校准功能,进入下一模式,显示温度值和上下限的温度值。3.7 复位电路的设计当 AT89S52 单片机的复位引脚 RST(全称 RESET)出现 2 个机器周期以上的高电平时,单片机就完成了复位操作。如果 RST 持续为高电平,单片
48、机就处于循环复位状态,而无法执行程序。因此要求单片机复位后能脱离复位状态。而本系统选用的是 12MHz 的晶振,因此一个机器周期为 1s,那么复位脉冲宽度最小应为 2s。在实际应用系统中,考虑到电源的稳定时间,参数漂移,晶振稳定时间以及复位的可靠性等因素,必须有足够的余量根据应用的要求,复位操作通常有两种基本形式:上电复位、手动复位。上电复位要求接通电源后,自动实现复位操作。AT89S52 单片机的上电复位POR( Power On Reset)实质上就是上电延时复位,也就是在上电延时期间把单片机锁定在复位状态上。在单片机每次初始加电时,首先投入工作的功能部件是复位电路。 复位电路把单片机锁定
49、在复位状态上并且维持一个延时(记作 TRST),以便给予电源电压从上升到稳定的一个等待时间;在电源电压稳定之后,再插入一成都工业学院毕业设计(论文)22个延时,给予时钟振荡器从起振到稳定的一个等待时间;在单片机开始进入运行状态之前, 还要至少推迟 2 个机器周期的延时。本设计采用上电且开关复位电路,如图 3.15 所示上电后,由于电容充电,使 RST 持续一段高电平时间。当单片机已在运行之中时,按下复位键也能使RST 持续一段时间的高电平,从而实现上电且开关复位的操作。通常选择C=1030F,本设计采用的电容值为 10F 的电容和电阻为 4.7K 的电阻。图 3.15 复位电路第 4 章 系统的软件设计4.1 概述 电子万年历的功能是在程序控制下实现的。该系统的软件设计方法与硬件设计相对应,按整体功能分成多个不同的程序模块,分别进行设计、编程和调试,最后通过主程序将各程序模块连接起来。这样有利于程序修改和调试,增强了程序的可移植性。本系统的软件部分主要要进行公历计算程序设计,温