ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:1.23MB ,
资源ID:7647308      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-7647308.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(好1.双曲线的简单几何性质.ppt)为本站会员(jinchen)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

好1.双曲线的简单几何性质.ppt

1、1.双曲线的标准方程:,形式一: (焦点在x轴上,(-c,0)、 (c,0),形式二:(焦点在y轴上,(0,-c)、(0,c)其中,一、复习回顾:,o,Y,X,关于X,Y轴, 原点对称,(a,0),(0,b),(c,0),A1A2 ; B1B2,|x|a,|y|b,F1,F2,A1,A2,B2,B1,2.椭圆的图像与性质:,双曲线的 简单几何性质(1),目标,理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征,重点,双曲线的几何性质及初步运用,难点,双曲线的几何性质的理解掌握,2、对称性,一、研究双曲线 的简单几何性质,1、范围,关于x轴、y轴

2、和原点都是对称的.,x轴、y轴是双曲线的对称轴,原点是对称中心, 又叫做双曲线的中心。,(-x,-y),(-x,y),(x,y),(x,-y),二、讲授新课:,3、顶点,(1)双曲线与对称轴的交点,叫做双曲线的顶点,4、渐近线,(1),(2),双曲线与渐近线无限接近,但永不相交。,它们互相垂直,并且平分双曲线 实轴和虚轴所成的角,5、离心率,离心率。,ca0,e 1,e是表示双曲线开口大小的一个量,e越大开口越大!,(1)定义:,(2)e的范围:,(3)e的含义:,等轴双曲线的离心率e= ?,焦点在y轴上的双曲线的几何性质,双曲线标准方程:,双曲线性质:,1.范围:,2.对称性:,3.顶点:,

3、4.渐近线方程:,5.离心率:,ya或y-a,关于坐标轴和原点对称,A1(0,-a),A2(0,a),A1A2为实轴,B1B2为虚轴,如何记忆双曲线的渐进线方程?,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),A1(0,-a),A2(0,a),关于x轴、y轴、原点对称,渐进线,F2(0,c)F1(0,-c),如何记忆双曲线的渐进线方程?,例1 :求双曲线,的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。,解:把方程化为标准方程,可得:实半轴长a=4,虚半轴长b=3,半焦距c=,焦点坐标是(0,-5),(0,5),离心率:,渐近线方程:

4、,例题讲解,例2,解:设双曲线的标准方程,练习,1.中心在原点,实轴长为10,虚轴长为6的双曲线的标准 方程为( ),A.,C.,B,A.,B.,C.,D.,C,2.双曲线 的渐近线方程为( ),3.双曲线 的虚轴长是实轴长的2倍,则m的值为,1、若双曲线的渐近线方程为 则双曲线的离心率为 。(焦点在x轴),能力提升,2、若双曲线的离心率为2,则两条渐近线的夹角为 。 (焦点在x轴),1、若双曲线的渐近线方程为 则双曲线的离心率为 。(焦点在x轴),2、若双曲线的离心率为2,则两条渐近线的夹角为 。 (焦点在x轴),再见,解:设双曲线方程为, 双曲线方程为, ,解之得k=4,例题讲解,法二:巧设方程,运用待定系数法. 设双曲线方程为 ,巩固练习:,“共渐近线”的双曲线的应用,0表示焦点在x轴上的双曲线; 0表示焦点在y轴上的双曲线。,总结:,关于x轴、y轴、原点对称,图形,方程,范围,对称性,顶点,离心率,A1(- a,0),A2(a,0),A1(0,-a),A2(0,a),关于x轴、y轴、原点对称,渐进线,F2(0,c)F1(0,-c),例3、双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为20m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).,A,A,0,x,C,C,B,B,y,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报