1、2019/5/13,高等数学课件,第四节,一、对面积的曲面积分的概念与性质,二、对面积的曲面积分的计算法,机动 目录 上页 下页 返回 结束,对面积的曲面积分,第十章,2019/5/13,高等数学课件,一、对面积的曲面积分的概念与性质,引例: 设曲面形构件具有连续面密度,类似求平面薄板质量的思想, 采用,可得,求质,“大化小, 常代变, 近似和, 求极限”,的方法,量 M.,其中, 表示 n 小块曲面的直径的,最大值 (曲面的直径为其上任意两点间距离的最大者).,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,定义:,设 为光滑曲面,“乘积和式极限”,都存在,的曲面积分,
2、其中 f (x, y, z) 叫做被积,据此定义, 曲面形构件的质量为,曲面面积为,f (x, y, z) 是定义在 上的一,个有界函数,或第一类曲面积分.,若对 做任意分割和局部区域任意取点,则称此极限为函数 f (x, y, z) 在曲面 上对面积,函数, 叫做积分曲面.,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,则对面积的曲面积分存在., 对积分域的可加性.,则有, 线性性质.,在光滑曲面 上连续,对面积的曲面积分与对弧长的曲线积分性质类似., 积分的存在性.,若 是分片光滑的,例如分成两,片光滑曲面,机动 目录 上页 下页 返回 结束,2019/5/13,高
3、等数学课件,定理: 设有光滑曲面,f (x, y, z) 在 上连续,存在, 且有,二、对面积的曲面积分的计算法,则曲面积分,证明: 由定义知,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,而,(光滑),机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,说明:,可有类似的公式.,1) 如果曲面方程为,2) 若曲面为参数方程,只要求出在参数意义下dS,的表达式 ,也可将对面积的曲面积分转化为对参数的,二重积分. (见本节后面的例4, 例5),机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,例1. 计算曲面积分,其中是球面,被平面,
4、截出的顶部.,解:,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,思考:,若 是球面,被平行平面 z =h 截,出的上下两部分,则,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,例2. 计算,其中 是由平面,坐标面所围成的四面体的表面.,解: 设,上的部分, 则,与,原式 =,分别表示 在平面,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,例3.,设,计算,解: 锥面,与上半球面,交线为,为上半球面夹于锥面间的部分,它在 xoy 面上的,投影域为,则,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,机
5、动 目录 上页 下页 返回 结束,思考: 若例3 中被积函数改为,计算结果如何 ?,2019/5/13,高等数学课件,例4. 求半径为R 的均匀半球壳 的重心.,解: 设 的方程为,利用对称性可知重心的坐标,而,用球坐标,思考题: 例 3 是否可用球面坐标计算 ?,例3 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,例5. 计算,解: 取球面坐标系, 则,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,例6. 计算,其中 是球面,利用对称性可知,解: 显然球心为,半径为,利用重心公式,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,
6、例7. 计算,其中 是介于平面,之间的圆柱面,分析: 若将曲面分为前后(或左右),则,解: 取曲面面积元素,两片,则计算较繁.,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,例8. 求椭圆柱面,位于 xoy 面上方及平面,z = y 下方那部分柱面 的侧面积 S .,解:,取,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,例9.,设有一颗地球同步轨道通讯卫星, 距地面高度,h = 36000 km,机动 目录 上页 下页 返回 结束,运行的角速度与地球自转角速度相同,试计算该通讯卫星的覆盖面积与地球表面积的比.,(地球半径 R = 6400 km
7、 ),解:,建立坐标系如图,覆盖曲面 的,半顶角为 ,利用球坐标系, 则,卫星覆盖面积为,2019/5/13,高等数学课件,机动 目录 上页 下页 返回 结束,故通讯卫星的覆盖面积与地球表面积的比为,由以上结果可知, 卫星覆盖了地球,以上的面积,故使用三颗相隔,角度的通讯卫星就几乎可以覆盖地球,全表面.,说明: 此题也可用二重积分求 A (见下册P109 例2) .,2019/5/13,高等数学课件,内容小结,1. 定义:,2. 计算: 设,则,(曲面的其他两种情况类似),注意利用球面坐标、柱面坐标、对称性、重心公式,简化计算的技巧.,机动 目录 上页 下页 返回 结束,2019/5/13,高
8、等数学课件,思考与练习,P158 题1;3;4(1) ; 7,解答提示:,P158 题1.,P158 题3.,设,则,P184 题2,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,P158 题4(1)., 在 xoy 面上的投影域为,这是 的面积 !,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,P159 题7.,如图所示, 有,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,P184 题2. 设,一卦限中的部分, 则有( ).,( 2000 考研 ),机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,作业,P158 4(3); 5(2);6(1), (3), (4); 8,第五节 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,备用题 1. 已知曲面壳,求此曲面壳在平面 z1以上部分 的,的面密度,质量 M .,解: 在 xoy 面上的投影为,故,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,2. 设 是四面体,面, 计算,解: 在四面体的四个面上,同上,机动 目录 上页 下页 返回 结束,2019/5/13,高等数学课件,机动 目录 上页 下页 返回 结束,