ImageVerifierCode 换一换
格式:PPT , 页数:64 ,大小:1.56MB ,
资源ID:7288484      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-7288484.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(铝栅+硅栅器件的版图.ppt)为本站会员(hyngb9260)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

铝栅+硅栅器件的版图.ppt

1、铝栅、硅栅器件的版图,铝栅工艺MOSFET的结构Structure,Gate,Source,Drain,N阱硅栅CMOS IC的剖面图,以SiO2为栅介质时,叫MOS器件,这是最常使用的器件形式。历史上也出现过以Al2O3为栅介质的MAS器件和以 Si3N4为栅介质的MNS 器件,以及以SiO2+Si3N4为栅介质的MNOS器件,统称为金属-绝缘栅-半导体器件-MIS 器件。以Al为栅电极时,称铝栅器件。以重掺杂多晶硅(Poly-Si) 为栅电极时,称硅栅器件。它是当前MOS器件的主流器件。,硅栅工艺是利用重掺杂的多晶硅来代替铝做为MOS管的栅电极,使MOS电路特性得到很大改善,它使|VTP|

2、下降1.1V,也容易获得合适的VTN值并能提高开关速度和集成度。硅栅工艺具有自对准作用,这是由于硅具有耐高温的性质。栅电极,更确切的说是在栅电极下面的介质层,是限定源、漏扩散区边界的扩散掩膜,使栅区与源、漏交迭的密勒电容大大减小,也使其它寄生电容减小,使器件的频率特性得到提高。另外,在源、漏扩散之前进行栅氧化,也意味着可得到浅结。,铝栅工艺为了保证栅金属与漏极铝引线之间有一定的间隔,要求漏扩散区面积要大些。而在硅栅工艺中覆盖源漏极的铝引线可重迭到栅区,这是因为有一绝缘层将栅区与源漏极引线隔开,从而可使结面积减少30%40%。硅栅工艺还可提高集成度,这不仅是因为扩散自对准作用可使单元面积大为缩小

3、,而且因为硅栅工艺可以使用“二层半布线”即一层铝布线,一层重掺杂多晶硅布线,一层重掺杂的扩散层布线。由于在制作扩散层时,多晶硅要起掩膜作用,所以扩散层不能与多晶硅层交叉,故称为两层半布线铝栅工艺只有两层布线:一层铝布线,一层扩散层布线。硅栅工艺由于有两层半布线,既可使芯片面积比铝栅缩小50%又可增加布线灵活性。,简化N阱硅栅CMOS工艺演示,氧化层生长,曝光,氧化层的刻蚀,光刻1,刻N阱掩膜版,N阱注入,光刻1,刻N阱掩膜版,形成N阱,氮化硅的刻蚀,N阱,P-SUB,场氧的生长,N阱,P-SUB,去除氮化硅,N阱,P-SUB,重新生长二氧化硅(栅氧),N阱,P-SUB,生长多晶硅,N阱,P-S

4、UB,刻蚀多晶硅,N阱,P-SUB,刻蚀多晶硅,N阱,P-SUB,场氧化层,栅氧化层,P+离子注入,N阱,P-SUB,N+离子注入,N阱,P-SUB,生长磷硅玻璃PSG,N阱,P-SUB,光刻接触孔,N阱,P-SUB,刻铝,N阱,P-SUB,刻铝,N阱,P-SUB,N阱,P-SUB,铝栅PMOSFET的制造流程,Step 0: Start with a bare n-type silicon wafer.,N Doped Silicon,*Step 1: (layering) Grow thick layer (5000) of silicon dioxide (field oxide) to

5、 act as a doping barrier.,*Step 2a: (patterning) Apply photoresist.,Source/Drain: Photomask (dark field) mask 1,Clear Glass,Chromium,Cross Section,Step 2b: (patterning) Expose photoresist to create temporary pattern for source/drain regions.,N Doped Silicon,Thick Field Oxide,Photoresist,Ultraviolet

6、Light,Photomask,Step 2c: (patterning) Develop photoresist, completing temporary pattern for source/drain regions.,N Doped Silicon,Thick Field Oxide,Photoresist,Step 2d: (patterning) Wet etch permanent openings for source/drain into field oxide.,N Doped Silicon,Thick Field Oxide,Photoresist,Step 2e:

7、(patterning) Remove photoresist. Permanent pattern remains in the silicon dioxide.,N Doped Silicon,Thick Field Oxide,Source/Drain Windows: Microscope View mask 1,Bare Silicon,Thick Field Oxide,Cross Section,*Step 3a: (doping) Apply p-type spin-on dopant film. Boron penetrates into the silicon throug

8、h the holes in the field oxide to begin formation of the source and drain regions.,N Doped Silicon,P+ Drain,P+ Source,Thick Field Oxide,Boron-Doped Spin-On Oxide,Step 3b: (heat treatment) Drive dopants deeper into silicon using high temperatures (1000), completing formation of the source and drain r

9、egions.,N Doped Silicon,P+ Drain,P+ Source,Thick Field Oxide,Boron-Doped Spin-On Oxide,P+ Drain,P+ Source,Channel Length - Leff,Step 4a: (layering) Wet etch to remove SOD (spin-on dopant) and field oxide layers.,N Doped Silicon,P+ Drain,P+ Source,Source/Drain Doping: Microscope View Mask1,P+ Doped S

10、ource and Drain (not actually visible),N-Doped Substrate,Cross Section,*Step 4b: (layering) Regrow new field oxide layer.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Oxide grows slightly thicker over doped areas.,*Step 5a: (patterning) Apply photoresist.,Thick Field Oxide,N Doped Silicon,P+

11、 Drain,P+ Source,Photoresist,Gate: Photomask (dark field) mask2,Clear Glass,Chromium,Cross Section,Step 5b: (patterning) Expose photoresist to create temporary pattern for gate region.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Photoresist,Ultraviolet Light,Photomask,Step 5c: (patterning)

12、Develop photoresist, completing temporary pattern for gate region.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Photoresist,Step 5d: (patterning) Wet etch permanent opening for gate region into field oxide.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Photoresist,Step 5e: (patterning

13、) Remove photoresist. Permanent pattern remains in the silicon dioxide.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,*Step 6: (layering) Grow thin layer (700) of silicon dioxide to act as the gate oxide for the transistor.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,

14、After Gate Oxide Growth: Microscope View,P+ Doped Source and Drain (under Field Oxide),Thick Field Oxide,Thin Gate Oxide,Cross Section,*Step 7a: (patterning) Apply photoresist.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Step 7b: (patterning) Expose photoresist t

15、o create temporary pattern for contact holes.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Ultraviolet Light,Photomask,Contacts: Photomask (dark field) mask 3,Clear Glass,Chromium,Cross Section,Step 7c: (patterning) Develop photoresist, completing temporary patter

16、n for contact holes.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Step 7d: (patterning) Etch permanent holes for contacts into field oxide.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Step 7e: (patterning) Remove photoresist. P

17、ermanent contact holes in the field oxide remain.,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,After Contact Patterning: Microscope View,Contact Hole (bare silicon),P+ Doped Source and Drain (under Field Oxide),Thick Field Oxide,Thin Gate Oxide,Cross Section,*Step 8a: (layeri

18、ng) Deposit aluminum layer over entire wafer surface.,Metal,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Step 8b: (heat treatment) Alloy aluminum at moderate temperatures (450) to form good electrical contact with silicon.,Metal,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ S

19、ource,Thin Gate Oxide,Alloyed Aluminum-Silicon,*Step 9a: (patterning) Apply photoresist.,Metal,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Step 9b: (patterning) Expose resist to create temporary pattern to define metal interconnects and gate electrode.,Metal,Thic

20、k Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Ultraviolet Light,Photomask,Metal Interconnects: Photomask (light field),Chromium,Clear Glass,Cross Section,Step 9c: (patterning) Develop photoresist, completing temporary pattern for metal interconnects and gate electrode.

21、,Metal,Thick Field Oxide,N Doped Silicon,P+ Drain,P+ Source,Thin Gate Oxide,Photoresist,Step 9d: (patterning) Etch permanent pattern into metal for interconnects and gate electrode.,Step 9e: (patterning) Remove photoresist. The PMOS Transistor is now complete! Step 10: Test devices for functionality and performance. Step 11: Go out for a beer!,Completed Product: Microscope View,Source Bond Pad,Drain Bond Pad,Gate Bond Pad,Aluminum,Thin Gate Oxide (under metal),Contact Hole (under metal),P+ Doped Source and Drain (under field oxide and metal),Thick Field Oxide,Cross Section,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报