ImageVerifierCode 换一换
格式:PPT , 页数:41 ,大小:332.50KB ,
资源ID:7281451      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-7281451.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(递归算法设计与分析.ppt)为本站会员(lxhqcj)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

递归算法设计与分析.ppt

1、Recursion,Algorithm : Design & Analysis 3,In the last class,Asymptotic growth rate The Sets , and Complexity Class An Example: Searching an Ordered Array Improved Sequential Search Binary Search Binary Search Is Optimal,Recursion,Recursive Procedures Proving Correctness of Recursive Procedures Deriv

2、ing recurrence equations Solution of the Recurrence equations Guess and proving Recursion tree Master theorem Divide-and-conquer,Thinking Recursively,Towers of Hanoi How many moves are need to move all the disks to the third peg by moving only one at a time and never placing a disk on top of a small

3、er one.,Recursion: an Implementation View,Activation Frame Basic unit of storage for an individual procedure invocation at run time Providing a frame of reference in which the procedure executes for this invocation only Space is allocated in a region of storage called the frame stack Activation trac

4、e,Recursion Tree,int fib(int n) int f, f1, f2; if (n2) f=n; else f1=fib(n-1); f2=fib(n-2); f=f1+f2; return f;,fibn: 3f1:1f2:1f: 2,fibn: 0f1:f2:f: 0,fibn: 1f1:f2:f: 1,fibn: 2f1:1f2:0f: 1,fibn: 1f1:f2:f: 1,Activation Tree Activation frame creation is in preorder,The cost for the simplicity: inefficien

5、cy: The number of recursive calls for computing Fib(31): ?,2692537,Loop-free Complexity,In a computation without while or for loops, but possibly with recursive procedure calls, The time that any particular activation frame is on the top of the frame stack is O(L), where L is the number of lines in

6、the procedure that contain either a simple statement or a procedure call. (Note: L is a constant) The total computation time is (C), where C is the total number of procedure calls that occur during the computation. (Note: for an algorithm, maxLi is a constant.),2-Tree,2-Tree,Common Binary Tree,inter

7、nal nodes,external nodes no child any type,Both left and right children of these nodes are empty tree,External Path Length(EPL),The EPL of a 2-tree t is defined as follows: Base case 0 for a single external node Recursion t is non-leaf with sub-trees L and R, then the sum of: the external path lengt

8、h of L; the number of external node of L; the external path length of R; the number of external node of R; In fact, the external path length of t is the sum of the lengths of all the paths from the root of t to any external node in t.,Calculating the External Path Length,EplReturn calcEpl(TwoTree t)

9、 EplReturn ansL, ansR; EplReturn ans=new EplReturn(); 1. if (t is a leaf) 2. ans.epl=0; ans.extNum=1; 3. else 4. ansL=calcEpl(leftSubtree(t); 5. ansR=calcEpl(rightSubtree(t); 6. ans.epl=ansL.epl+ansR.epl+ansL.extNum +ansR.extNum; 7. ans.extNum=ansL.extNum+ansR.extNum+1 8. Return ans;,TwoTree is an A

10、DT defined for 2-tree EplReturn is a organizer class with two field epl and extNum,Correctness of Procedure calcEpl,Let t be any 2-tree. Let epl and m be the values of the fields epl and extNum, respectively, as returned by calcEpl(t). Then: 1. epl is the external path length of t. 2. m is the numbe

11、r of external nodes in t. 3. epl mlg(m) (note: for 2-tree with internal n nodes, m=n+1),Proof on Procedure calcEpl,Induction on t, with the “sub-tree” partial order: Base case: t is a leaf. (line 2) Inductive hypothesis: the 3 statements hold for any proper subtree of t, say s. Inductive case: by in

12、d. hyp., eplL, eplR, mL, mR,are expected results for L and R(both are proper subtrees of t), so: Statement 1 is guranteed by line 6 Statement 2 is guranteed by line 7 (any external node is in either L or R) Statement 3: by ind.hyp. epl=eplL+eplR+m mLlg(mL)+mRlg(mR)+m, note f(x)+f(y)2f(x+y)/2) if f i

13、s convex, and xlgx is convex for x0, so, epl 2(mL+mR)/2)lg(mL+mR)/2)+m = m(lg(m)-1)+m =mlgm.,Binary Search: Revisited,int binarySearch(int E, int first, int last, int K) 1. if (lastfirst) 2. index=-1; 3. else 4. int mid=(first+last)/2 5. if (K=Emid) 6. index=mid; 7. else if (KEmid) 8. index=binarySe

14、arch(E, first, mid-1, K) 9. else if (KEmid) 10. index=binarySearch(E, mid+1, last, K) 11.return index;,Binary Search: Correctness,Correctness of binarySearch: For all n0, if binarySearch(E, first, last, K) is called, and if: the problem size is (last-first+1)=n Efirst, , Elast are in non-decreasing

15、order then: it returns -1 if K does not occur in E within the range first, , last it returns index if K=Eindex,Binary Search: Proof of Correctness,Induction on n, the problem size. Base case: n=0, line 2 executed, returning -1. For n0(that is: firstlast), assume that binarySearch(E,f,l,K) satisfies

16、the correctness on problems of size k(k=0,1,2,n-1), and k=l-f+1. mid=(first+last)/2 must be within the search range, so: if line 5 is true, line 6 executed. otherwise, the induction hypothesis applies for both recursive calls, on line 8 and 10. What we have to do is to verify that the preconditions

17、for the procedure hold, and return value of the recursive call satisfies the post-conditions of the problem.,Proving Binary Search (cont.),Case that line 5 is false, i.e. KEmid Since firstmidlast, we have (mid-1)-first+1n-1 Last-(mid+1)+1n-1 So, the inductive hypothesis applies for both recursive ca

18、lls on line 8 and 10 For both calls, only one actual parameter is changed and decreased, so, line 8 or line 10 will return the appropriate results,Recurrence Equation: Concept,A recurrence equation: defines a function over the natural number n in term of its own value at one or more integers smaller

19、 than n Example: Fibonacci numbers Fn=Fn-1+Fn-2 for n2 F0=0, F1=1 Recurrence equation is used to express the cost of recursive procedures.,Recurrence Equation for Sequential Search,seqSearchRec(E,m,num,K) 1. if (mnum) 2. ans=-1 3. else if (Em=K) 4. ans=m 5. else 6. ans = seqSearchRec(E,m+1,num,K) 7.

20、 return ans,“cost” is defined as the number of comparison of array element. For simple statement, only line 3 costs 1. The result:T(n)=(0+max(0, 1+max(0, T(n-1)+0 = T(n-1)+1,1,2,3,4,6,7,Recurrence Equation for Binary Search,int binarySearch(int E, int first, int last, int K) if (lastEmid) index=bina

21、rySearch(E, mid+1, last, K) return index;,the only nonrecursive cost,the two alternative recursions with the max input size of n/2 or (n-1)/2,The equation: T(n) = T(n/2)+1,Guess the Solutions,Example: T(n)=2T(n/2) +n Guess T(n)O(n)? T(n)cn, to be proved for c large enough T(n)O(n2)? T(n)cn2, to be p

22、roved for c large enough Or maybe, T(n)O(nlogn)? T(n)cnlogn, to be proved for c large enough,Try to prove T(n)cn:T(n)=2T(n/2)+n 2c(n/2)+n 2c(n/2)+n = (c+1)n, Fail!,However: T(n) = 2T(n/2)+n 2cn/2+n 2c(n-1)/2+n = cn+(n-c) cn,T(n) = 2T(n/2)+n 2(cn/2 lg (n/2)+n c lg (n/2)+n= cn lg n cn log 2 +n= cn lg

23、n cn + n cn log n for c1,Note: the proof is invalid for T(1)=1,Decrease for Larger,T(n)=T(n/2)+T(n/2)+1 Its difficult to prove T(n)cn directly. However, we can prove T(n)cn-b for some b0. T(n) = T(n/2)+T(n/2)+1 (cn/2-b)+ (cn/2-b)+1= cn-2b+1which is no larger than cn for any b1,Whats Wrong?,We have p

24、roved that T(n)=2T(n/2)+n has a tight lower bound of O(nlgn). But: if we assume that T(n/2)cn/2 T(n) = 2T(n/2)+n cn+n = O(n) Whats wrong?,Recursion Tree,T(size),nonrecursive cost,The recursion tree for T(n)=T(n/2)+T(n/2)+n,T(n),n,Recursion Tree Rules,Construction of a recursion tree work copy: use a

25、uxiliary variable root node expansion of a node: recursive parts: children nonrecursive parts: nonrecursive cost the node with base-case size,Recursion tree equation,For any subtree of the recursion tree, size field of root = nonrecursive costs of expanded nodes + size fields of incomplete nodes Exa

26、mple: divide-and-conquer: T(n) = bT(n/c) + f(n) After kth expansion:,Evaluation of a Recursion Tree,Computing the sum of the nonrecursive costs of all nodes. Level by level through the tree down. Knowledge of the maximum depth of the recursion tree, that is the depth at which the size parameter redu

27、ce to a base case.,Recursion Tree,T(n),n,Work copy: T(k)=T(k/2)+T(k/2)+k,At this level: T(n)=n+2(n/2)+4T(n/4)=2n+4T(n/4),n/2d,(size 1),T(n)=nlgn,Recursion Tree for,T(n)=3T(n/4)+(n2),cn2,T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),c(1/16)n)2,c(1/16)n)2,c( n)2,c( n)2,c( n)2,log4n,

28、cn2,Total: (n2),Note:,c(1/16)n)2,c(1/16)n)2,c(1/16)n)2,T(1),Verifying “Guess” by Recursive Tree,Inductive hypothesis,Recursion Tree for,T(n)=bT(n/c)+f(n),f(n),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),T(1),f(n/c2),f(n/c2),f(n/c2),f(n/c2),f(n/c2),f(n/c2),f(n/c2),f(n/c2),f(n/c2),f(n/

29、c),f(n/c),f(n/c),logcn,f(n),Note:,b,b,Total ?,Solving the Divide-and-Conquer,The recursion equation for divide-and-conquer, the general case:T(n)=bT(n/c)+f(n) Observations: Let base-cases occur at depth D(leaf), then n/cD=1, that is D=lg(n)/lg(c) Let the number of leaves of the tree be L, then L=bD,

30、 that is L=b(lg(n)/lg(c). By a little algebra: L=nE, where E=lg(b)/lg(c), called critical exponent.,Divide-and-Conquer: the Solution,The recursion tree has depth D=lg(n)/ lg(c), so there are about that many row-sums. The 0th row-sum is f(n), the nonrecursive cost of the root. The Dth row-sum is nE,

31、assuming base cases cost 1, or (nE) in any event. The solution of divide-and-conquer equation is the nonrecursive costs of all nodes in the tree, which is the sum of the row-sums.,Solution by Row-sums,Little Master Theorem Row-sums decide the solution of the equation for divide-and-conquer: Increasi

32、ng geometric series: T(n)(nE) Constant: T(n) (f(n) log n) Decreasing geometric series: T(n) (f(n),This can be generalized to get a result not using explicitly row-sums.,Master Theorem,Loosening the restrictions on f(n) Case 1: f(n)O(nE-), (0), then: T(n)(nE) Case 2: f(n)(nE), as all node depth contr

33、ibute about equally: T(n)(f(n)log(n) case 3: f(n)(nE+), (0), and f(n)(nE+), (), then: T(n)(f(n),The positive is critical, resulting gaps between cases as well,Using Master Theorem,Using Master Theorem,Looking at the Gap,T(n)=2T(n/2)+nlgn a=2, b=2, E=1, f(n)=nlgn We have f(n)=(nE), but no 0 satisfies

34、 f(n)=(nE+), since lgn grows slower that n for any small positive . So, case 3 doesnt apply. However, neither case 2 applies.,Proof of the Master Theorem: Case 3,(Note: in asymptotic analysis, f(n)(nE+) leads to f(n) is about (nE+), ignoring the coefficients.,Decreasing geometric series,Chip and Conquer,The equation: T(n) = bT(n-c)+f(n)As an example: Hanoi Tower, with b=2, c=1,T(n-c),f(n-c),T(n-c),f(n-c),T(n-c),f(n-c),T(n-2c),f(n-2c),b branches,totalling n/c levels,Solution of Chip and Conquer,grows exponentially in n,Home Assignment,pp.143- 3.3-3.4 3.6 3.9-3.10,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报