ImageVerifierCode 换一换
格式:PPT , 页数:49 ,大小:885.50KB ,
资源ID:7179671      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-7179671.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(概率论与数理统计课件第一章总结与练习.ppt)为本站会员(jinchen)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

概率论与数理统计课件第一章总结与练习.ppt

1、一、重点与难点,二、主要内容,三、典型例题,第一章 概率论的基本概念 习 题 课,一、重点与难点,1.重点,随机事件的概念,古典概型的概率计算方法,概率的加法公式,条件概率和乘法公式的应用,全概率公式和贝叶斯公式的应用,2.难点,古典概型的概率计算 全概率公式的应用,二、主要内容,随机 现象,随机 试验,事件的 独立性,随 机 事 件,基 本 事 件,必 然 事 件,对 立 事 件,概 率,古典 概型,几何 概率,乘法 定理,事件的关系和运算,全概率公式与贝叶斯公式,性 质,定 义,条件 概率,不可能事件,复 合 事 件,在一定条件下可能出现也可能不出现的现象称为随机现象.,随机现象,可以在相

2、同的条件下重复地进行;,每次试验的可能结果不止一个,并且能事 先明确试验的所有可能结果;,进行一次试验之前不能确定哪一个结果 会出现.,在概率论中,把具有以下三个特征的试验称为随机试验.,随机试验,样本空间的元素 ,即试验E 的每一个结果, 称为样本点.,随机试验E的所有可能结果组成的集合称为样本空间,记为 S.,随机试验 E 的样本空间 S 的子集称为 E 的随机事件, 简称事件.,随机事件,不可能事件 随机试验中不可能出现的结果.,必然事件的对立面是不可能事件,不可能事件 的对立面是必然事件,它们互称为对立事件.,基本事件 由一个样本点组成的单点集.,必然事件 随机试验中必然会出现的结果.

3、,重要的随机事件,事件的关系和运算,(1) 包含关系,若事件 A 出现,必然导致事件 B 出现,,则称事件 B 包含事件 A,记作,图示 B 包含 A .,S,B,(2) A等于B,(3) 事件A与B的并(和事件),图示事件 A与 B 的并.,S,A,若事件 A 包含事件 B , 而且事件 B 包含事件A, 则称事件 A 与事件 B 相等,记作 A=B.,(4) 事件A与B的交(积事件),图示事件 A 与 B 的积.,S,A,B,AB,(5) 事件A与B互不相容 (互斥),若事件 A 的出现必然导致事件 B 不出现 , B 出现也必然导致 A 不出现,则称事件 A 与 B互不相容,即,图示 A

4、 与 B 互不相容(互斥) .,S,(6) 事件A与B的差,由事件A出现而事件B不出现所组成的事件称为事件A与B的差.记作 A- B.,图示 A 与 B 的差.,S,A,B,设A表示“事件A出现”, 则“事件A不出现”称为事件A的对立事件或逆事件.记作,图示 A 与 B 的对立 .,S,B,若 A 与 B 互逆,则有,(7) 事件A的对立事件,说明 对立事件与互斥事件的区别,S,S,B,A,B 对立,A,B 互斥,互斥,对立,事件运算的性质,(1)频率的定义,频率,设 A 是随机试验 E 的任一事件, 则,(2)频率的性质,概率的定义,概率的可列可加性,概率的性质,n 个事件和的情况,定义,等

5、可能概型 (古典概型),设试验 E 的样本空间由n 个样本点构成, A为E 的任意一个事件,且包含 m 个样本点, 则事件 A 出现的概率记为:,古典概型中事件概率的计算公式,称此为概率的古典定义.,几何概型,当随机试验的样本空间是某个区域,并且任意 一点落在度量 (长度, 面积, 体积) 相同的子区域是 等可能的,则事件A的概率可定义为,条件概率,同理可得,为在事件 B 发生的条件下事件 A 发生的条件概率.,(1) 条件概率的定义,(2) 条件概率的性质,乘法定理,样本空间的划分,全概率公式与贝叶斯公式,全概率公式,说明 全概率公式的主要用处在于它可以将 一个复杂事件的概率计算问题分解为若

6、干个简单 事件的概率计算问题,最后应用概率的可加性求出 最终结果.,贝叶斯公式,称此为贝叶斯公式.,事件 A 与 B 相互独立是指事件 A 的概率与事件 B 是否出现无关.,说明,事件的相互独立性,(1)两事件相互独立,(2)三事件两两相互独立,注意,三个事件相互独立,三个事件两两相互独立,(3)三事件相互独立,n 个事件相互独立,n个事件两两相互独立,重要定理及结论,两个结论,三、典型例题,例1,解,说明 一个事件往往有多个等价的表达方式.,证明,例2,思路 引进事件,例3,解,由题意知,由加法公式得,思路 由于抽到的表与来自哪个地区有关,故此 题要用全概率公式来讨论.,例4,解,又因为,思路 为了求系统的可靠性,分两种情况讨论:,例5,解,所以,备 用 例 题,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报