ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:788.29KB ,
资源ID:7174830      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-7174830.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(含各向异性尺度形变数据集匹配问题的 Lie 群方法.PDF)为本站会员(精品资料)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

含各向异性尺度形变数据集匹配问题的 Lie 群方法.PDF

1、35 7 1Vol.35, No.72009 M7ACTA AUTOMATICA SINICA July, 2009c_sM “ 5Lie ZE H1 62 72;3 D4K1YVsc_sM “ 5,| ,K(Iterative closest point,ICP)ZEBV,|c_sM “ 5 Lie 5.YVLie LZE,| / Lie 5B“ =Q?5,K B .ZE .dICPZE y +,7 O ?) ivM “ 5. ,yN1.dZEz Z.K, , B* SM4Z.1oM “ ,_sM, Lie ,=Q?ms |O29; TP39Lie Group Method for Data

2、 Set Registration Problem withAnisotropic Scale DeformationYING Shi-Hui1 PENG Ji-Gen2 ZHENG Kai-Jie2;3 QIAO Hong4Abstract By analyzing the data set registration problem with anisotropic scale deformation, we introduced the con-straints to the model. Combining with the procedure of traditional iterat

3、ive closest point (ICP) method, the registrationproblem was described as a constrained optimization problem. Using parameterized method by Lie group and quadricapproximation to the objective function, the registration problem was translated into a series of quadratic programmingproblems. Then, a nov

4、el scale-registration algorithm was proposed. The numerical simulations showed that such methodnot only was rapid and accurate as the traditional ICP method, but also could deal with the registration problem withlarge scale deformation. By introducing the constraints to the scale parameters, the alg

5、orithm was more robust. A wayfor choosing the initial transformations was proposed to assume the global registration.Key words Data set registration, anisotropic scale deformation, Lie group, quadratic programming “ 5 V9 j $m) 5 B d1 5,7K(Iterative closest point, ICP)ZE1V20 W90 MBeslMckay1aChenMedio

6、ni2Zhang31 4X 5BKidZE.v T1“/ Z : 1)4 E . Fitzgibbon4Levenberg-MarquardtZE E, Jost5YsO q/ # ICPZE. 2)4 E Z. Lee64B 9ICPZE V L,7Sharp74 M+ZE, ICPZEJ ll 2008-04-24 l 2008-12-24Received April 24, 2008; in revised form December 24, 2008SE$?Z9(9739) (2007CB311002)Supported by National Basic Research Progr

7、am of China (973Program) (2007CB311002)1. Zv “ Z200444 2.Yv “d S 710049 3.y =Sv 9 S350007 4.S S1 1001901. Department of Mathematics, School of Science, ShanghaiUniversity, Shanghai 200444 2. Faculty of Science, Xi0an Jiao-tong University, Xi0an 710049 3. School of Mathematics andComputer Science, Fu

8、jian Normal University, Fuzhou 3500074. Institute of Automation, Chinese Academy of Sciences, Bei-jing 100190DOI: 10.3724/SP.J.1004.2009.00867q, Silva88L. Ei 4 ,7Granger9v d 9# E| E E Z. 3) E aS. SICP Ei I nd .7 5M i, ,B8 /, ,vl? 3 M.D10 I n _ % M “W 5. E Zz,V | 5 Z.D11,YV ,v E Z, 7 , D10 D11ZE ?$w:

9、SkRkxl; i = 0SkEsiRkxl; i = 1; ;NsSkRkEriNsxl; i = Ns +1; ;NC0 , vlYK p,yN1 p./ , Hqe.S 2 D+ ,yN, T(9)N(SK)1SL exp(nXi=1siEsi) (SK)1SU (13):Sk = diagfsk1; ;skng, SL = diagfsL1;, sLngSU = diagfsU1 ; ;sUng,5Blog(sLi =ski) asi log(sUi =ski); i = 1; ;Ns(14)yN5(6) /=Q?5minaf(a) = aTHa +2LTa (15)s:t: log(

10、sLi =ski) asi log(sUi =ski); i = 1; ;Ns,“ l T(12), a = (as1; ;asNs;ar1, ,arNr)T 2 RN.ICPZEB,c_sM “ E /:E1 (c_sM “ E).1. “X = fxlgNxl=1Y =fyjgNyj=1.2.S0, R0, T0 0.3.k3.1.l = 1; ;Nx,YVminyj2Y kSkRkxl +Tk yjk2 pzkl ;3.2.9 “k = 1Nx PNxl=1kSkRkxl + Tkzkl k2;3.3YV p=Q?(15) pa;3.4. Sk+1 = Sk exp(PNsi=1 asi

11、Esi), Rk+1 =Rk exp(PNri=1 ariEri ), Tk+1 = zkc Sk+1Rk+1xc;4.9 = 1“k+1=“kTT5.4.1. ,5KS = Sk+1, R = Rk+1T = Tk+1;4.2.5k ( k +1,3.1 E1 l , / . 1. E1/ 9 lB l. . !X = fxigNxi=1Y = fyjgNyj=1Rn “. !Sk, Rk, TkZk =fzigNxi=1sYkMaMa MMK“,5 -/ T“k = 1NxNxXi=1kSkRkxi +Tk zkik2 (16)/ Tek = 1NxNxXi=1kSk+1Rk+1xi +T

12、k+1 zkik2 (17)lek “k.“,i = 1; ;NxkSk+1Rk+1xi+Tk+1zk+1i kkSk+1Rk+1xi+Tk+1zkik“k+1 ek,y70 ek+1 “k+1 ek “k , f“kgk1 h O/.yN, E l f l. V A: K K.yN1 P E1 | ,1| S | l. l ,yN, | B1o5./ c_sM 5B* S (+Y S)4Z. “X = fxigNxi=1Y = fyjgNyj=1. xZ sY:MX = PNxi=1(xi xc)(xi xc)TMY = PNyj=1(yj yc)(yj yc)T. , xcycV U “X

13、Y.:1 2 n1 2 nMXMY+, p1; ;pnq1; ;qnsY +_ . “ bWs+, V4 SM870135 s0i =rii (18) B V |sLi = 0:95s0i, sUi = 1:05s0i. 6, | SR0R0 = q1; ;qnp1; ;pn1 (19)7 S MT0 V | “Mxc yc.3 L Ls s: 1) 2 “ .Bs, sYBeslMckay0s ICPZE1aZhaZE10aICPZE11 E1BF “ L, “ ZET1 . 2) 3 u “W . 3 ICPZEE11 . Matlab6.5,PentiumIV 3.0GHz CPU, 5

14、12M RAM.3.1 2 “ 1 L MPEG7(PartB)20FT L “.sYBeslMckayICPZE1aZhaZE10aICPZE11# E1 , T V1m1 (n/:) U.VV1 V A, - ZE rTA J, Besl 1; ;75,#sYv = 10, 100378F “, |t“T “sYT k “Bun045, dragonStan-dRight 48happyStandRight 48 . P V1,/ RMS:RMS = 11mmXi=1kSRxi +T zik2!12(20), RaTSsYV UKa M,7zibun000, dragonStandRigh

15、t 0happyStandRight 0SRxi +TK.| = 0:001,Bun000Bun045 “ SM9.V2 (n/:) = 0:5; 1:0; 2:0; 10:0100 H SM,V T V3m2 ( = 0:5 H E1 T) (n/:) U.VV3n: E1 E9 r q H,4 .B 1 ,V74 .+Y, F r,yN, E Z dz.B,9 VVm2 A.Bdrag-onStandRight 0dragonStandRight 48, happy-StandRight 0happyStandRight 48 “. T V4V5#m3m4 (n873:) U.4 ZYV

16、_sy0,c_sM “ 5 ,4 ZE. 8, n5YV| ,ICPB|5Lie 5; Lie ZE “Sf =Q/,| 5872135 (a) -(, j(0.0,90.0)(a) Conflgurations beforeregistering, viewpoint(0.0,90.0)(b) -(, j(23.5,6.0)(b) Conflgurations beforeregistering, viewpoint(23.5,6.0)(c) (, j(0.0,90.0)(c) Conflgurations afterregistering, viewpoint(0.0,90.0)(d) (

17、, j(23.5,6.0)(d) Conflgurations afterregistering, viewpoint(23.5,6.0)m2 = 0:5 HBunny “a k “( TFig.2 Conflgurations of model data set, test data set, and registration results of Bunny data setV2 Bunny / SMTable 2 The initial conflgurations of Bunny data set with difierent scales MsS0.5 0.0534 0.4425

18、0.0602 25.7695 0.0437 0.0477 0.0392 0.5046 0.4753 0.4883 0.54611.0 0.0534 0.4425 0.0602 25.7695 0.0057 0.0006 0.0214 1.0092 0.9506 0.9766 1.09232.0 0.0534 0.4425 -0.0602 25.7695 0.0797 0.0972 0.0142 2.0185 1.9013 1.9532 2.184510.0 0.0534 0.4425 -0.0602 25.7695 0.2718 0.8699 0.2993 10.092 9.5064 9.76

19、68 10.923100.0 0.0534 0.4425 -0.0602 25.7695 2.4337 9.5625 3.5061 100.92 95.064 97.668 109.23V3 Bunny / “ TTable 3 Registration results of Bunny data set with difierent scales E E1RMS HW(s)RMS HW(s)0.5 0.48999 0.00194 61 82.564 0.48956 0.48995 0.49046 0.00186 65 88.4531.0 0.97998 0.00194 30 40.053 0

20、.97912 0.97990 0.98092 0.00186 31 45.2492.0 1.95996 0.00194 39 53.865 1.95824 1.95980 1.96184 0.00186 35 45.89610.0 9.79982 0.00194 43 61.187 9.79122 9.79902 9.80922 0.00186 42 59.974100.0 97.9982 0.00194 43 63.756 97.9122 97.9902 98.0922 0.00186 45 66.165V4 Dragon / “ TTable 4 Registration results

21、of Dragon data set with difierent scales E E1RMS HW(s)RMS HW(s)0.5 0.49012 0.00581 49 42.405 0.46882 0.49995 0.50136 0.00532 55 50.5431.0 0.98024 0.00581 52 48.267 0.93764 0.99990 1.00272 0.00532 61 55.8412.0 1.96048 0.00581 41 38.418 1.87528 1.99980 2.00544 0.00532 48 45.96210.0 9.80242 0.00581 55

22、52.561 9.37641 9.99903 10.0272 0.00532 57 55.356100.0 98.0242 0.00581 55 55.026 93.7641 99.9903 100.272 0.00532 63 58.1447 H:c_sM “ 5Lie ZE873(a) -(, j(0.0,90.0)(a) Conflgurations beforeregistering, viewpoint(0.0,90.0)(b) -(, j(10.0,30.0)(b) Conflgurations beforeregistering, viewpoint(10.0,30.0)(c)

23、(, j(0.0,90.0)(c) Conflgurations afterregistering, viewpoint(0.0,90.0)(d) (, j(10.0,30.0)(d) Conflgurations afterregistering, viewpoint(10.0,30.0)m3 Dragon “a k “( TFig.3 Conflgurations of model data set, test data set, and registration results of Dragon data set(a) -(, j(0.0,90.0)(a) Conflgurations

24、 beforeregistering, viewpoint(0.0,90.0)(b) -(, j(45.0,10.0)(b) Conflgurations beforeregistering, viewpoint(45.0,10.0)(c) (, j(0.0,90.0)(c) Conflgurations afterregistering, viewpoint(0.0,90.0)(d) (, j(45.0,10.0)(d) Conflgurations afterregistering, viewpoint(45.0,10.0)m4 HappyBuddha “a k “( TFig.4 Con

25、flgurations of model data set, test data set, and registration results of HappyBuddha data setV5 HappyBuddha / “ TTable 5 Registration results of HappyBuddha data set with difierent scales E E1RMS HW(s)RMS HW(s)0.5 0.49009 0.00332 55 89.847 0.48972 0.49011 0.49042 0.00314 62 92.7581.0 0.98018 0.0033

26、2 59 96.217 0.97944 0.98022 0.98084 0.00314 69 100.4192.0 1.96036 0.00332 52 85.624 1.95888 1.96044 1.96168 0.00314 59 88.17410.0 9.80183 0.00332 62 98.825 9.79442 9.80224 9.80841 0.00314 66 93.754100.0 98.0183 0.00332 51 81.467 97.9442 98.0224 98.0841 0.00314 58 86.675B“ =Q?5.V7 E. S L ,ZE ICPZE y

27、+,7 O ?)ivM “ 5.N,1.dICPZE 1M ,yN z.d 58s _ 5,7_ 5B V 4 5 Vr,yN,9 B pd 5B5.T, 1 dMZE, d 5 p.References1 Besl P J, McKay N D. A method for registration of 3-Dshapes. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 1992, 14(2): 239256874135 2 Chen Y, Medioni G. Object modeling by regi

28、stration ofmultiple range image. In: Proceedings of the IEEE Confer-enceon Robotics and Automation. Sacramento, USA: IEEE,1991. 272427293 Zhang Z Y. Iterative point matching for registration of free-from curves and surfaces. International Journal of ComputerVision, 1994, 13(2): 1191524 Fitzgibbon A

29、W. Robust registration of 2D and 3Dpoint sets. Image and Vision Computing, 2003, 21(13-14):114511535 Jost T, Hugli H. A multi-resolution ICP with heuristic clos-est point search for fast and robust 3D registration of rangeimages. In: Proceedings of the 4th International Conferenceon 3D Digital Imagi

30、ng and Modeling. Washington D. C.,USA: IEEE, 2003. 4274336 Lee B U, Kim C M, Park R H. An orientation reliability ma-trix for the iterative closest point algorithm. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2000,22(10): 120512087 Sharp G C, Lee S W, Wehe D K. ICP registration

31、usinginvariant features. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2002, 24(1): 901028 Silva L, Bellon O R P, Boyer K L. Precision range imageregistration using a robust surface interpenetration mea-sure and enhanced genetic algorithms. IEEE Transactionson Pattern Analysis and M

32、achine Intelligence, 2005, 27(5):7627769 Granger S, Pennec X. Multi-scale EM-ICP: a fast and ro-bust approach for surface registration. In: Proceedings ofthe 7th European Conference on Computer Vision. Copen-hagen, Denmark: Springer, 2002. 697310 Zha H B, Ikuta M, Hasegawa T. Registration of range i

33、m-ages with difierent scanning resolutions. In: Proceedings ofthe IEEE International Conference on Systems, Man, andCybernetics. Nashville, USA: IEEE, 2000. 1495150011 Ying S H, Peng J G, Du S Y, Qiao H. A scale stretch methodbased on ICP for 3D data registration. IEEE Transactionson Automation Scie

34、nce and Engineering, to be published12 Barber C B, Dobkin D P, Huhdanpaa H. The quickhull algo-rithm for convex hulls. ACM Transactions on MathematicalSoftware, 1996, 22(4): 46948313 Helgason S. Difierential Geometry, Lie Groups, and Sym-metric Spaces. New York: Academic Press, 2001 H Zv “ =.2008 MY

35、v pV.1Z_ T MY9 j $. E-mail: (YING Shi-Hui Lecturer at theSchool of Science of Shanghai Univer-sity. He received his Ph.D. degree inscience from Xi0an Jiaotong Universityin 2008. His research interest covers pattern recognitionand computer vision.)6Yv “d S q.1Z_dLWfs, “ .YT.E-mail: (PENG Ji-Gen Professor at the In-stitute of Information and S

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报