1、第一章,分析基础,函数,极限,连续, 研究对象, 研究方法, 研究桥梁,函数与极限,第一章,二、函数的运算,三、函数的几种特性,一、变量与函数,第一节,机动 目录 上页 下页 返回 结束,函数概念,四、初等函数,元素 a 属于集合 M , 记作,元素 a 不属于集合 M , 记作,一、 变量与函数,1. 集合定义及表示法,定义 1.,具有某种特定性质的事物的总体称为集合.,组成集合的事物称为元素.,不含任何元素的集合称为空集 ,记作 .,机动 目录 上页 下页 返回 结束,表示法:,(1) 列举法:,按某种方式列出集合中的全体元素 .,例:,有限集合,自然数集,(2) 描述法:,x 所具有的特
2、征,例: 整数集合,或,有理数集,p 与 q 互质,实数集合,x 为有理数或无理数,开区间,闭区间,机动 目录 上页 下页 返回 结束,无限区间,点的 邻域,其中, a 称为邻域中心 , 称为邻域半径 .,半开区间,去心 邻域,左 邻域 :,右 邻域 :,机动 目录 上页 下页 返回 结束,2. 映射的概念,机动 目录 上页 下页 返回 结束,引例,机动 目录 上页 下页 返回 结束,定义2.,设 X , Y 是两个非空集合,若存在一个对应规,则 f ,使得,有唯一确定的,与之对应 ,则,称 f 为从 X 到 Y 的映射,记作,元素 y 称为元素 x 在映射 f 下的 像 ,记作,元素 x 称
3、为元素 y 在映射 f 下的 原像 .,集合 X 称为映射 f 的定义域 ;,Y 的子集,称为 f 的 值域 .,注意:,1) 映射的三要素 定义域 , 对应规则 , 值域 .,2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .,机动 目录 上页 下页 返回 结束,对映射,若, 则称 f 为满射;,若,有,则称 f 为单射;,若 f 既是满射又是单射,则称 f 为双射 或一一映射.,机动 目录 上页 下页 返回 结束,2. 逆映射与复合映射,(1) 逆映射的定义,定义:,若映射,为单射,则存在一新映射,使,习惯上 ,的逆映射记成,例如, 映射,其逆映射为,其中,称此映射,为 f
4、 的逆映射 .,机动 目录 上页 下页 返回 结束,(2) 复合映射,机动 目录 上页 下页 返回 结束,手电筒,D,引例.,复合映射,定义.,则当,由上述映射链可定义由 D 到 Y 的复,设有映射链,记作,合映射 ,时,或,机动 目录 上页 下页 返回 结束,注意: 构成复合映射的条件,不可少.,以上定义也可推广到多个映射的情形.,定义域,3、函数,定义3. 设数集,则称映射,为定义在,D 上的函数 ,记为,f ( D ) 称为值域,函数图形:,机动 目录 上页 下页 返回 结束,自变量,因变量,(对应规则),(值域),(定义域),例如, 反正弦主值,定义域,对应规律的表示方法:,解析法,、
5、图象法,、列表法,使表达式及实际问题都有意义的自变量 集合.,定义域,值域,又如, 绝对值函数,定义域,值 域,机动 目录 上页 下页 返回 结束,三、 函数的几种特性,设函数,且有区间,(1) 有界性,使,称,使,称,说明: 还可定义有上界、有下界、无界,(2) 单调性,为有界函数.,在 I 上有界.,使,若对任意正数 M , 均存在,则称 f ( x ) 无界.,称 为有上界,称 为有下界,当,时,称,为 I 上的,称,为 I 上的,单调增函数 ;,单调减函数 .,机动 目录 上页 下页 返回 结束,(3) 奇偶性,且有,若,则称 f (x) 为偶函数;,若,则称 f (x) 为奇函数.,
6、说明: 若,在 x = 0 有定义 ,为奇函数时,则当,必有,例如,偶函数,双曲余弦,记,机动 目录 上页 下页 返回 结束,又如,奇函数,双曲正弦,记,再如,奇函数,双曲正切,记,机动 目录 上页 下页 返回 结束,(4) 周期性,且,则称,为周期函数 ,若,称 l 为周期,( 一般指最小正周期 ).,周期为 ,周期为,注: 周期函数不一定存在最小正周期 .,例如, 常量函数,狄里克雷函数,x 为有理数,x 为无理数,机动 目录 上页 下页 返回 结束,3. 反函数与复合函数,(1) 反函数的概念及性质,若函数,为单射,则存在逆映射,习惯上,的反函数记成,称此映射,为 f 的反函数 .,机动
7、 目录 上页 下页 返回 结束,其反函数,(减),(减) .,1) yf (x) 单调递增,且也单调递增,性质:,2) 函数,与其反函数,的图形关于直线,对称 .,例如 ,对数函数,互为反函数 ,它们都单调递增,机动 目录 上页 下页 返回 结束,指数函数,(2) 复合函数,则,设有函数链,称为由, 确定的复合函数 ,机动 目录 上页 下页 返回 结束, 复合映射的特例,u 称为中间变量.,注意: 构成复合函数的条件,不可少.,例如, 函数链 :,函数,但函数链,不能构成复合函数 .,可定义复合,机动 目录 上页 下页 返回 结束,两个以上函数也可构成复合函数.,例如,可定义复合函数:,四、
8、初等函数,(1) 基本初等函数,幂函数、,指数函数、,对数函数、,三角函数、,反三角函数,(2) 初等函数,由常数及基本初等函数,否则称为非初等函数 .,例如 ,并可用一个式子表示的函数 ,经过有限次四则运算和复合步,骤所构成 ,称为初等函数 .,可表为,故为初等函数.,又如 , 双曲函数与反双曲函数也是初等函数 .,机动 目录 上页 下页 返回 结束,非初等函数举例:,符号函数,当 x 0,当 x = 0,当 x 0,取整函数,当,机动 目录 上页 下页 返回 结束,例 求,的反函数及其定义域.,解:,当,时,则,当,时,则,当,时,则,反函数,定义域为,机动 目录 上页 下页 返回 结束,
9、内容小结,1. 集合及映射的概念,定义域 对应规律,3. 函数的特性,有界性, 单调性, 奇偶性, 周期性,4. 初等函数的结构,作业 P46 1 (1),(3) ; 2;3(4); 4(2),(3);5(2),(3);10,2. 函数的定义及函数的二要素,第二节 目录 上页 下页 返回 结束,且,备用题,证明,证: 令,则,由,消去,得,时,其中,a, b, c 为常数,且,为奇函数 .,为奇函数 .,1. 设,机动 目录 上页 下页 返回 结束,2 . 设函数,的图形与,均对称, 求证,是周期函数.,证:,由,的对称性知,于是,故,是周期函数 ,周期为,机动 目录 上页 下页 返回 结束,