ImageVerifierCode 换一换
格式:PPT , 页数:45 ,大小:2.07MB ,
资源ID:6937514      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-6937514.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.3.2 简单的线性规划问题 课件2(人教A版必修5).ppt)为本站会员(jw66tk88)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

3.3.2 简单的线性规划问题 课件2(人教A版必修5).ppt

1、3.3.2 简单的线性规划问题,了解线性规划的意义,了解线性规划的基本概念,掌握线性规划问题的图解法,并能应用线性规划的方法解决一些简单的实际问题,提高解决实际问题的能力,课前自主学习,1关于x,y的不等式(组)称为对变量x,y的约束条件,如果约束条件都是关于x,y的一次不等式,则称约束条件为_约束条件 答案:线性 2把要求最大(小)值的函数zf(x,y)称为_函数 答案:目标,自学导引,3在线性约束条件下求线性目标函数的最大值或最小值问题,称为_规划问题满足线性约束条件的解(x,y)叫做_解,由所有可行解组成的集合叫做_域,其中,使目标函数取得最大值或最小值的可行解叫做最优解 答案:线性 可

2、行 可行,线性目标函数z2x3y最大值的几何意义是什么?,自主探究,A4 B11 C12 D14,预习测评,解析:只需画出线性规划区域,如下图可知,z4xy在A(2,3)处取得最大值11.,答案:B,A无最大值有最小值 B无最小值有最大值 C无最大值和最小值 D有最大值和最小值 解析:可行域无上界 答案:A,3在如图所示的区域内,zxy的最小值为_,解析:当直线xyz0经过原点时,z最小,最小值为0. 答案:0,4.在如图所示的区域内,zxy的最大值为_,解析:因为z为直线zxy的纵截距,所以要使z最大,只要纵截距最大就可以,当直线过(0,2)点时,直线的纵截距最大,最大值为2. 答案:2,课

3、堂讲练互动,1基本概念 (1)约束条件和线性约束条件:变量x,y满足的一次不等式(组)叫做对变量x,y的约束条件;如果约束条件都是关于x,y的一次不等式,那么又称为线性约束条件线性约束条件除了用一次不等式表示外,有时也用一次方程表示 (2)目标函数和线性目标函数:求最大值或最小值所涉及的变量x,y的解析式,叫目标函数;如果这个解析式是关于x,y的一次解析式,那么又称为线性目标函数,要点阐释,(3)线性规划问题:一般地,在线性约束条件下,求线性目标函数的最大值或最小值问题,统称为线性规划问题 (4)可行解与可行域:满足线性约束条件的解(x,y)叫做可行解由所有可行解组成的集合叫做可行域 (5)最

4、优解:使目标函数取得最大值或最小值的可行解,称为这个问题的最优解,2解决线性规划问题的一般方法 解决线性规划问题的一般方法是图解法,其步骤如下: (1)确定线性约束条件,注意把题中的条件准确翻译为不等式组; (2)确定线性目标函数; (3)画出可行域,注意作图准确; (4)利用线性目标函数(直线)求出最优解; (5)实际问题需要整数解时,应调整检验确定的最优解(调整时,注意抓住“整数解”这一关键点),说明:求线性目标函数在约束条件下的最值问题的求解步骤是: 作图画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l. 平移将直线l平行移动,以确定最优解所对应的点

5、的位置 求值解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值,特别提醒:寻找整点最优解的方法 平移找解法:先打网格、描整点、平移直线l,最先经过或最后经过的整点便是最优解,这种方法应充分利用非整数最优解的信息,结合精确的作图才行当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解,调整优值法:先求非整点最优解及最优值,再借助不定方程知识调整最优解,最后筛选出整点最优解 由于作图有误差,有时由图形不一定能准确而迅速地找到最优解,此时将可能的数逐一检验即可,题型一 求线性目标函数的最值,典例剖析,解:画出约束条件表示的点(x,y)的可行域,如图所

6、示的阴影部分(包括边界直线) 作直线l:3x5y0,把直线向右上方平移至l1的位置时,直线经过可行域上的点M,此时,l1:3x5yz0的纵截距最小,此时z3x5y取最小值,图解法是解决线性规划问题的有效方法其关键在于平移直线axby0时,看它经过哪个点(或哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,再注意到它的几何意义,从而确定是取得最大值还是最小值,A有最小值2,最大值3 B有最小值2,无最大值 C有最大值3,无最小值 D既无最大值,也无最小值,解析:如图所示,作出可行域,作直线l0:xy0,平移l0,当l0过点A(2,0)时,z有最小值2,无最大值,答案:B,题型二 求

7、解非线性目标函数的最值,解:画出满足条件的可行域 (1)令tx2y2.则对t的每个值,x2y2t表示一簇同心圆(圆心为原点O),且对同一圆上的点,x2y2的值都相等由下图可知:,当(x,y)在可行域内取值时,当且仅当圆过C点时,u最大,过(0,0)时u最小又C(3,8),umax73,umin0.,方法点评:(1)对形如z(xa)2(yb)2型的目标函数均可化为求可行域内的点(x,y)与点(a,b)间的距离平方的最值问题,题型三 线性规划的实际应用 【例3】 某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人

8、计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?,上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域,作直线l0:x0.5y0,并作平行于直线l0的一组直线x0.5yz,zR,与可行域相交,其中有一条直线经过可行域上的M点,且与直线x0.5y0的距离最大,这里M点是直线xy10和03x0.1y1.8的交点,答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大,方法点评:充分利用已知条件,找出不等关系,画出适合条件的平面区域,然后在该平面区域内找出符合

9、条件的点的坐标实际问题要注意实际意义对变量的限制必要时可用表格的形式列出限制条件,3某工厂制造甲、乙两种产品,已知制造甲产品1 kg要用煤9吨,电力4 kW,劳力(按工作日计算)3个;制造乙产品1 kg要用煤4吨,电力5 kW,劳力10个又知制成甲产品1 kg可获利7万元,制成乙产品1 kg可获利12万元,现在此工厂只有煤360吨,电力200 kW,劳力300个,在这种条件下应生产甲、乙两种产品各多少千克,才能获得最大经济效益?,利润目标函数为z7x12y. 作出不等式组所表示的平面区域,即可行域(如下图),作直线l:7x12y0,把直线l向右上方平移至l1位置时,直线l经过可行域上的点M时,

10、此时z7x12y取最大值,答:应生产甲种产品20千克,乙种产品24千克,才能获得最大经济效益,误区解密 凭空而想,没抓住问题本质致误,因为x、y为整数,而离点A最近的整点是C(1,2),这时S13,所以所求的最大值为13. 错因分析:显然整点B(2,1)满足约束条件,且此时S14,故上述解法不正确 对于整点解问题,其最优解不一定是离边界点最近的整点 而要先对边界点作目标函数tAxBy的图象,则最优解是在可行域内离直线tAxBy最近的整点,正解:与错解中第一段解题过程相同 因为x,y为整数,所以当直线5x4yt平行移动时,从点A起第一个通过的可行域的整点是B(2,1),此时Smax14.,1常见的几种目标函数的最值的求法: 利用截距的几何意义;利用斜率的几何意义;利用距离的几何意义往往是根据题中给出的不等式,求出(x,y)的可行域,利用(x,y)的条件约束,数形结合求得目标函数的最值,课堂总结,2线性规划应用题主要体现在两个方面:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务通常是根据题意设出决策变量,找出线性规划的约束条件和线性目标函数,再利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(或最小),

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报