ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:193.59KB ,
资源ID:6782468      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-6782468.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(五种常用小波基含MATLAB实现.doc)为本站会员(hwpkd79526)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

五种常用小波基含MATLAB实现.doc

1、1.给出五种常用小波基的时域和频域波形图。与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。小波分析在工程应用中,一个十分重要的问题(t)就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有 Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、 Morlet 小波、Meyer 小波等 5种。(1)Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简答

2、的一个小波函数,它是支撑域在 范围内的单个矩形波。 Haar0,1t函数的定义如下: 其 他 120-(t)tHaar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也有自己的优点,如:计算简单; 不但与 正交,而且与自己的整数位移正交。(t)t)2(jz因此,在 的多分辨率系统中 Haar 小波构成一组最简单的正交归一的小ja波族。的傅里叶变换是:()t2/24=sin()jea( ) jHaar 小波的时域和频域波形图0 0.5 1 1.5-1.5-1-0.500.511.5thaar 为为0 5 10 15x 10501234567x 105fhaar 为为i=20;wav

3、 = haar;phi,g1,xval = wavefun(wav,i); subplot(1,2,1);plot(xval,g1,-r,LineWidth,1.5); xlabel(t)title(haar 时域); g2=fft(g1);g3=abs(g2);subplot(1,2,2);plot(g3);xlabel(f)title(haar 频域)(2)Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者 Inrid Daubechies 构造的小波函数,简写为 dbN,N 是小波的阶数。小波 和尺度函数 中的支撑区(t)(t)为 , 的消失矩为 N。除

4、 外,dbN 不具有对称性(即非线性相12(t)1位) 。dbN 没有明确的表达式(除 外) ,但转换函数 h 的平方模是明确的。Daubechies 小波系是由法国学者 Daubechies 提出的一系列二进制小波的总称,在 Matlab 中记为 dbN,N 为小波的序号,N 值取 2,3,10。该小波没有明确的解析表达式,小波函数 与尺度函数 的有效支撑长度为 2N-1.当 N取 1 时便成为 Haar 小波。令 ,其中 为二项式的系数,则有kNkypC10-()kN1-)2)p(sin(co)220 m式中, 。ehjkNk-1200(Daubechies 小波具有以下特点:(1)在时域

5、是有限支撑的,即 长度有限。(t)(2)在频域 在 =0 处有 N 阶零点。)((3) 和它的整数位移正交归一,即 。tk)dt-(t(4)小波函数 可以由所谓“尺度函数” 求出来。尺度函数 为(t)低通函数,长度有限,支撑域在 t=0(2N-1)范围内。Daubechies 小波的时域和频域波形图0 2 4 6 8-1-0.500.511.5tdb4 为为0 2000 4000 6000 800001002003004005006007008009001000fdb4 为为i=10;wname = db4;phi,g1,xval = wavefun(wname,i); subplot(1,2

6、,1);plot(xval,g1,-r,LineWidth,1.5); xlabel(t)title(db4 时域); g2=fft(g1);g3=abs(g2);subplot(1,2,2);plot(g3,-r,LineWidth,1.5);xlabel(f)title(db4 频域)注意 Daubechies 小波常用来分解和重构信号,作为滤波器使用。波形如下:0 2 4 6 8-0.200.20.40.60.8 为为为为为为为0 2 4 6 8-1-0.500.51 为为为为为为为0 2 4 6 8-0.500.51 为为为为为为为0 2 4 6 8-1-0.500.51 为为为为为为

7、为wname = db4; % 计算该小波的 4 个滤波器Lo_D,Hi_D,Lo_R,Hi_R = wfilters(wname);subplot(2,2,1); stem(Lo_D);title(分解低通滤波器);subplot(2,2,2); stem(Hi_D);title(分解高通滤波器);subplot(2,2,3); stem(Lo_R);title(重构低通滤波器);subplot(2,2,4); stem(Hi_R);title(重构高通滤波器);(3)Mexican Hat(mexh)小波Mexican Hat 函数为 Gauss 函数的二阶导数: et2-)(1te2-)

8、(因为它的形状像墨西哥帽的截面,所以也称为墨西哥帽函数。Mexican Hat(mexh)小波的时域和频域波形图-10 -5 0 5 10-0.500.51tMexihat 为 为0 50 100051015fmexihat 为 为d=-6;h=6;n=100; g1,x=mexihat(d,h,n); subplot(2,2,1);plot(x,g1,-r,LineWidth,1.5);xlabel(t)title(Mexihat 时域);g2=fft(g1);g3=(abs(g2);subplot(2,2,2);plot(g3);xlabel(f)title(mexihat 频域);特点:

9、墨西哥帽函数在时间域与频率域都有很好的局部化,并且满足。由于它不存在尺度函数,所以小波函数不具有正交性。0(t)dR(4)Morlet 小波它是高斯包络下的单频率副正弦函数:(5x)cos(t)2-etCC 是重构时的归一化常数。Morlet 小波没有尺度函数 ,而且是非正交分t解。Morlet 小波的时域波形图和频域波形图-10 -5 0 5 10-1-0.500.51tMorlet 为 为0 50 100051015fMorlet 为 为d=-6;h=6;n=100; g1,x=morlet(d,h,n); subplot(2,2,1);plot(x,g1,-r,LineWidth,1.5

10、);xlabel(t)title(Morlet 时域 );g2=fft(g1);g3=abs(g2);subplot(2,2,2);plot(g3);xlabel(f)title(Morlet 频域 )(5)Meyer 小波Meyer 小波的小波函数和尺度函数都是在频率域中进行定义的,其定义为:38,2041)-v(cos)(2in21-2- ejwj其中,v(a)为构造 Meyer 小波的辅助函数,具有 0,a )-784a-(35a)324 v3401v(cos2)1-21- Meyer 小波不是紧支撑的,但它收敛的速度很快:n-2)t(t)Cn无限可微。(t)Meyer 小波的时域和频域

11、波形图-6 -4 -2 0 2 4 6-1012tMeyer 为为0 20 40 60 80 100 120 140051015fmeyer 为为d = -6;h = 6;n = 128; psi,x = meyer(d,h,n,psi); subplot(2,1,1), plot(x,psi,-r,LineWidth,1.5) xlabel(t)title(Meyer 时域); PSI=fft(psi);PSII=abs(PSI);subplot(2,1,2), plot(PSII);xlabel(f)title(meyer 频域)2、在信号 x(t)=sin(2*30t)+cos(2*50

12、t)加上噪音后分别进行 FFT 和 CWT 变换。解:引入随机噪声 randn(1,N)0 50 100-202tx(t)为 为 为 x(t)为 为 为0 50 100050fx(t)为 fft为 为 为0 50 100050fx(t)为 为 为 为 fft为 为 为 morlettime (or space) bscalesa20 40 60 80 10012460 50 100-101 为 为 为 10 50 100-202 为 为 为 2N=100;fs=1000;n=0:N-1;t=n/fs;x=sin(60*pi*t)+cos(100*pi*t); %原信号subplot(3,2,1

13、);plot(x,-r,LineWidth,1.5);xlabel(t)ylabel(x(t)title(原信号 x(t)波形图)F1=fft(x);m1=abs(F1);subplot(3,2,2);plot(m1);xlabel(f)title(x(t)的 fft 变换图)x1=randn(1,N); %加入噪声x2=x+x1;F2=fft(x2);m2=abs(F2);subplot(3,2,3);plot(m2);xlabel(f)title(x(t)加噪声后 fft 变换图)scale=1 2 4 6; %设置尺度subplot(3,2,4);x3=cwt(x2,scale,morl,plot);title(morlet); %加噪声后 CWT 变换结果图subplot(3,2,5);plot(x3(1,:);title(尺度为 1);subplot(3,2,6);plot(x3(2,:);title(尺度为 2);

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报