ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:2.11MB ,
资源ID:6637599      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-6637599.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(文科高数 函数的连续性.ppt)为本站会员(gnk289057)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

文科高数 函数的连续性.ppt

1、改变量,(可正可负),的改变量 ,(可正可负),当自变,一、函数的连续性,1. 自变量的改变量和函数的改变量,(1)自变量的改变量,(2)函数的改变量,第三节 函数的连续性与间断点,注:,y,x,D,D,分别为整体记号,不能理解为,及,曲线上相应点的纵坐标的改变量。,定义1,如果,在上述定义中,从而,定义2,如果,2.函数在点,处的连续性,指出:,定义1与定义2是等价的.,证明,因为,结论:,练习,证,由定义1知,右连续但不左连续 ,在左端,则称,函数连续点的全体所构,称为函数的连续区间。,在连续区间上,连续函数的图形是一条连绵不断的曲线。,证明,由极,限的运算法则和连续的定义可得连续函数的运

2、算法则:,法则1,则,点连续。,即,单调连续函数的,反函数在其对应的区间上是连续的。,应用函数连续的定义与上述两个法则,,可以证明,则,法则3 说明连续函数的复合函数仍为连续函数,,并可得如下结论:,例如,法则,解,故,指出:,解,解,练习,定理,则,这表明:,对连续函数在连续点求极限,只需求该点函数值.,由以上法则,可得:,解,因此,初等函数的定义区间就是它的连续区间。,练习,求下列函数的连续区间,并求极限:,解1,解2,点。,二、函数的间断点,间断点分类,:,按左、右极限是否,都存在来分类。,(一)第一类间断点,(左、右极限均存在),但不相等;,2.跳跃间断点,1.可去间断点,(二)第二类

3、间断点,右极限,对于可去间断点,,我们可以补充,或改变,指出:,由于,二类间断点。,(无穷型间断点),解,练习,是可去间断点,则补充或改变定义,使函数在该点连续。,如果,解,解,三、闭区间上连续函数的性质,我们不证明,只给出几何说明。,即在闭区间,使得,也不存在最小值。,也不存在最小值。,是连续函数,【注意】,定理的结论不一定成立。,(1),对开区间内的连续函数,或闭区间上有,它的最大值是,点上取得。,则对于满足,使得,定理2指出:,则至少存在一点,几何意义:,例,实根。,证明,故,根据推论可知,,至少存在一点,由推论知:,练习,证明,证明,四、小结,1. 函数在一点连续必须满足的三个条件;,5. 间断点的分类与判别;,2. 区间上的连续函数;,第一类间断点:,无穷型,振荡型.,间断点,6. 闭区间上连续函数的性质;,可去型,跳跃型.,第二类间断点:,3. 连续函数的运算法则;, 法则1(连续函数的四则运算法则);, 法则2(反函数的连续性);,法则2(复合函数的连续性);,4. 初等函数的连续性;,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报