1、1.1.1 集合的含义与表示,首先,恭喜在座的各位同学们顺利通过中考,来到了我们的课堂上。 我很高兴在这里见到你们!初次见面,我姓*,名*,希望在未来的学习生活中,我们能够成为很好的朋友,一起努力,教学相长。,welcome ,Let us start our first lesson !,问题情境:,一家百货商店需要进货,他第一批进货是帽子、皮鞋、热水瓶、闹钟共计4个品种,第二批进货是收音机、皮鞋、尼龙袜、闹钟、茶杯共计5个品种,问这家商店一共进了多少个品种的货?能否回答一共进了4 + 5 = 9种呢?,key:7种,这好像涉及了另一种新的运算?,两次进货的品种是:帽子,皮鞋,热水瓶,闹钟,
2、收音机,尼龙袜,茶杯,感知集合:,回顾初中接触到的一些集合,初中代数中涉及“集合”的提法:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集。初中几何中涉及“集合”的提法:到一个定点的距离等于定长的集合。,圆的概念,概念形成 集合的含义是什么?,(1)“小于l0”的自然数0,1,2,3,9。 (2)满足3x 2 x + 3的全体实数。 (3)我国从19912003年的13年内所发射的所有人造卫星。 (4)所有的正方形。 (5)高一(1)班全体同学。 (6)2004年1月1日之前与我国建立外交关系的所有国家。,以上各例(构成集合)有什么特点?请大家讨论 我们
3、能否给出集合一个大体描述? 上述六个例子中集合的元素各是什么?,认真看下面几个例子:,十分钟时间探讨总结!,讲授新课:,1集合:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(简称集)。,2集合的元素:构成集合的每个对象统称为元素。,集合的含义:把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集)。,你能说出集合中元素的特征吗?,在我们要了解集合元素的特征前, 先看看几个具有代表性的问题。,(1)A=1,3,问3,5哪个是A的元素?,(2)“我们班中高个子的同学”能否表示成集合?,(3)A=2,2,4表示是否正确?,(4)A=太平洋,大西洋,
4、B=太平洋,大西洋 是否表示同一集合?,有三个哦!,(1)确定性:集合的元素必须是确定的不能确定的对象不能构成集合。,如:“我班聪明的学生”不能组成集合。,如:应把集合1,2,2改写成,(2)互异性:对于一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,(3)无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,如:集合1,2,3和1,3,2表示同一集合。,1,2,三、集合元素的特征:,相等的集合: 只要构成两个集合的元素是一样的,我们就称这两个集合相等。,我们先来看一看例题.,例1 下面各组对象能否构成集合? (1)所有的好人; (2)小于2003的整数; (3)所有的直角三角形; (4) 我国的小河流; (5)大于小于11的偶数。,不能,能,能,不能,能,刚才你做对了吗? 如果现在再让你解答, 你会怎么回答?,谢谢!,