ImageVerifierCode 换一换
格式:PPT , 页数:61 ,大小:1.75MB ,
资源ID:6561673      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-6561673.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1 第一章_复数与复变函数.ppt)为本站会员(gnk289057)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

1 第一章_复数与复变函数.ppt

1、1,第一章 复数与复变函数,内 容 提 要复变函数就是自变量为复数的函数,本章先学 习复数的概念、性质与运算,然后再引入平面上的 点集、复变函数极限、连续本章中的许多概念在 形式上与微积分学中一些基本概念有相似之处,可 以把它们看作微积分学中相应的概念及定理在复数 域中的推广,2,第一章 复数与复变函数,1.1 复数 1.2 复数的三角表示 1.3 平面点集的一般概念 1.4 无穷大与复球面(不讲) 1.5 复变函数,3,第一节 复数,一、复数的基本概念 (p1),4,5,二、复数的代数运算(p2),1. 复数的和、差、积、商、模,和与差:,积:,商:,注:复数的运算满足交换律、结合律、分配律

2、,模:,6,2共轭复数及性质 (p3),重要性质:,注:复数的共轭性质在实际计算和证明中有广泛应用,7,例1计算复数,解:,法一(商的公式),法二(共轭性质),注:某些情况应用共轭性质计算显得简单,在计算中要灵活运用共轭性质。,8,例2,解:,由题意得,例3,解:,9,例4 (p4),证明:,证法二:,10,第二节 复数的表示法,一、复平面(p4),定义:,复数的模:,复数的辐角:,主辐角:,注:复数的辐角Argz是多值的,11,二、复数的表示法,1复数的向量表示法 (p7),因此,显然有不等式:,复数、复平面上点、 向量之间一一对应,12,13,2复数的三角表示法 (p9),利用直角坐标与极

3、坐标的关系:,复数的三角表示式:,14,3复数的指数表示法 (p44),欧拉公式:,复数的指数表示式:,15,注意:复数的三角表示式和指数表示式不是唯一的,因为辐角有无穷多种选择,如果有两个三角表示式(指数表示式)相等:,则可以推出:,16,主辐角值的确定(p7),17,例1,解:,于是,18,例1,解:,于是,19,例1,解:,于是,于是,20,例2:,主辐角,解:,模,21,三、用复数的三角表示及指数表示作乘除法(p10),模,辐角,注1:两个复数乘积的模等于它们模的乘积,辐角等于它们的辐角之和,22,模,辐角,注1:两个复数乘积的模等于它们模的乘积,辐角等于它们的辐角之和,说明:,23,

4、24,注2:两复数的商的模等于它们模的商,辐角等于被除数与除数的辐角之差,证明:,模,辐角,25,例5用三角表示式和指数表示式计算下列复数,解:,26,例5用三角表示式和指数表示式计算下列复数,27,四、复数的乘方与开方 (p12),1乘方公式,这公式称棣摩弗公式,28,四、复数的乘方与开方、棣摩弗公式,2开方公式(p13),注:,29,复数的乘方与开方 (p12),1乘方公式,2开方公式(p13),注:取,30,例7计算下列各题:,解:,31,即:,32,例8,解:,其解为,33,作业:练习册 1.1 复数练习册 1.2 复数的三角表示与指数表示复习:高等数学第九章第一节多元函数的基本概念,

5、34,第三节 平面点集的一般概念,研究复变函数问题,和实函数一样,每个复变量都有自己的变化范围,复变量的变化范围同于二元函数的变化范围,一、开集与闭集,1.邻域:,2.内点:,35,3.开集:,4.余集与闭集:,5边界:,36,6孤立点:,7有界集与无界集:,37,二、区域,1连通:,设G中任何两点都可以用完全属于G的折线连接起来,则称G是连通的,2区域:,连通的开集称为区域,记为D,3闭区域:,区域D与它的边界一起构成闭区域,,4圆环域:,38,5.角形域:,39,例1试说出下列各式所表示的点集是怎样的图形,并指出哪些是区域:,解:,40,1光滑曲线,光滑曲线,由若干段光滑曲线所组成的曲线称

6、为分段光滑曲线,三、平面曲线,41,2简单闭曲线,则称这条曲线为简单闭曲线,简单闭曲线,非简单闭曲线,42,3、复数形式的一般方程,定义:若平面上曲线的一般方程为:,则定义,为复数形式的一般方程。,定义:若平面上曲线的参数方程为:,则定义,4、复数形式的参数方程,43,例2,解:,为复数形式的直线方程,44,例3,解:,参数方程为,由参数式得复数形式参数方程为,45,例5,参数方程为,解:,例4,解:,直线的参数方程,46,例6*求下列方程所表示的曲线,解:,47,四、单连通区域与多连通区域,设D为一平面区域,若在D中任作一条简单闭曲线,而曲线内部总属于D,则称D为单连通区域,否则是多连通区域

7、,单连通区域的特征:属于D的任何一条简单闭曲线,在D内可经过连续变形而缩成一点,单连通区域,多连通区域,洞,48,第四节 无穷大与复球面(不讲),一、无穷远点,为了讨论问题方便,我们不但要讨论有限复数,还要讨论一个特殊的复数,-无穷大,,它是由下式定义的:,加法:,减法:,乘法:,除法:,而实部、虚部和辐角均没有意义,,49,这个点称为无穷远点,,复平面加上无穷远点称为扩充复平面,,扩充复平面上的每一条直线都通过无穷远点.,(3)无穷远点的邻域:,复球面定义:球面上的每一点都有唯一的复数与之对应,这样的球面称为复球面;,二、复球面,50,第五节 复变函数,一、复变函数的概念,按照这一法则,,1

8、定义:,设,设是一个复数的集合,,如果有一个确定的法则存在,,对于集合里的每一个复数,都有一个或几个复数,与之对应,,那么称,是,的复变函数,,记作:,51,例1,解:,2复变函数与二元函数的关系,例2(exp1.14),52,3映射的概念(不讲),在高等数学中,常把函数用几何图形来表示,对于复变函数,,由于它反映了两对变量之间的对应关系,因而无法用同一个平面的,几何图形表示出来,必须把它看成两个复平面上点集之间对应关系。,53,例3,54,例4,解:,55,二、复变函数的极限和连续,1复变函数的极限(p23),定义1,56,定理1设函数,证明:,说明:,这个定理是将复变函数,的极限问题转化为求两个二元函数,的极限问题.,57,定理2如果,例1,证明:,58,2复变函数的连续性(p24),定理3函数,说明:复变函数的极限与连续性的定义与实函数的极限与连续性的定义形式上完全相同,因此高等数学中的有关定理依然成立,因此又有有界闭区域上连续函数的性质,59,例2,解:,60,定理4(p26) (1)连续函数的和、差、积、商(分母不为0)是连续函数;(2)连续函数的复合函数是连续函数,定义*:,61,作业:练习册 1.1 复数练习册 1.2 复数的三角表示与指数表示复习:一元及二元函数(偏)导数的基本概念,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报