ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:34KB ,
资源ID:6546259      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-6546259.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学建模十大算法.doc)为本站会员(myw993772)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

数学建模十大算法.doc

1、数学建模竞赛中应当掌握的十类算法(上)1 十类常用算法 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 F:蒙特卡罗算法 举例.doc2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用 MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用 Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种

2、,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际

3、来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用 MATLAB 进行处理。 2以下将结合历年的竞赛题,对这十类算法进行详细地说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一

4、。举个例子就是 97 年的 A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和 108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正 态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多

5、赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是 98 年美国赛 A 题,生物组织切片的三维插值处理,94 年 A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。此类问题在 MATLAB 中有很多现成的函数可以调用,熟悉 MATLAB,这些方法都能游刃有余的用好。 2.3 规划类问题算法 竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如 98 年 B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规

6、划后用 Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。2.4 图论问题 98 年 B 题、00 年 B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。每一个算法都应该实现一遍,否则到比赛时再写就晚了。 2.5 计算机算法设计中的问题 计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。比如 92 年 B 题用分枝定界法,97 年 B 题是典型的动态规划问题,此外 98 年 B 题体现了分治算法。这方面问题和 ACM 程序设计竞赛中

7、的问题类似,推荐看一下计算机算法设计与分析 (电子工业出版社)等与计算机算法有关的书。 2.6 最优化理论的三大非经典算法 这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年 A 题的模拟退火算法,00 年 B 题的神经网络分类算法,象 01 年 B 题这种难题也可以使用神经网络,还有美国竞赛 89 年 A 题也和 BP 算法有关系,当时是 86 年刚提出 BP 算法,89 年就考了,说明赛题可能是当今前沿科技的抽象体现。03 年 B 题伽马刀问题也是

8、目前研究的课题,目前算法最佳的是遗传算法。 2.7 网格算法和穷举算法 网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在 N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在a, b 区间内取 M + 1 个点,就是 a , a + (b -a)/M , a +2*(b - a)/M , , b 那么这样循环就需要进行(M + 1)N 次运算,所以计算量很大。比如 97 年 A 题、99 年 B 题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用 MATLAB 做网格,否则会算很久的。穷举法大家都熟悉,就不说了。2.8

9、 一些连续数据离散化的方法 大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法应用很广,而且和上面的很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。 2.9 数值分析算法 这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。 2.10 图象处理算法 01 年 A 题中需要你会读 BMP 图象、美国赛 98 年 A 题需要你知道三维插值计算,03 年 B 题要求更高,不但需要

10、编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。做好这类问题,重要的是把 MATLAB 学好,特别是图象处理的部分。一般的数学建模论文都是摘要 5 分,数学筛选 35 分,数学模型35 分,数据模拟 15 分,总体感觉 10 分,不过话虽然是这样说的,一般好的数学建模论文最重要的就是摘要,你要逐词、逐句的抠清字眼,思路要清晰、语句要简洁易懂。评委老师一般看主要摘要的分数,分数高了,后面的也会认真地看下去,分数太底,就直接的被 pass 了,除了这些呢,还有你的方法问题,一定要让老师看到你的亮点,然后就是整篇论文的血做问题,同样的方法,如果你的写作很漂亮,那么影响到的就不只是印象分了,而是整体的分数。多看看数学建模网上的优秀论文,好好参照一下别人的写作语言,相信你会有很大的收获。Mathematica,Matlab,Maple,Lindo,Lingo,SPSS用得较多的有运筹学、概率与统计、计算方法、离散数学、微分方程要了解的基础学科1数学分析(高等数学) 2高等代数 (线性代数)3概率与数理统计4最优化理论 (规划理论)5图论 6组合数学7微分方程稳定性分析 8排队论

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报