ImageVerifierCode 换一换
格式:PDF , 页数:876 ,大小:6.21MB ,
资源ID:6232545      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-6232545.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(牛津简明数学辞典 The Concise Oxford Dictionary of Mathematics.pdf)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

牛津简明数学辞典 The Concise Oxford Dictionary of Mathematics.pdf

1、OXFORD PAPERBACK REFERENCEThe Concise Oxford Dictionary of MathematicsSomeentriesinthisdictionaryhaverecommendedweblinks.When you see the symbol at the end of an entry go to thedictionarys web page at http:/ Web links intheResourcessection and click straight through to the relevant websites.Christop

2、her Clapham was until 1993 Senior Lecturer inMathematics at the University of Aberdeen and has alsotaughtatuniversitiesinNigeria,Lesotho,andMalawi.Heisthe author of Introduction to Abstract Algebra andIntroduction to Mathematical Analysis. He lives in Exeter.James NicholsonhasamathematicsdegreefromC

3、ambridge,and taught at Harrow School for twelve years beforebecomingHeadofMathematicsatBelfastRoyalAcademyin1990. He lives in Belfast, but now works mostly with theSchoolofEducationatDurhamUniversity.Heisco-authorofStatistics GCSE for AQA.2The most authoritative and up-to-date reference books forbot

4、h students and the general reader.ABC of MusicAccountingAllusionsAnimal BehaviourArchaeologyArchitecture and Landscape ArchitectureArt and ArtistsArt TermsArthurian Literature and LegendAstronomyBattles3Better WordpowerBibleBiologyBritish HistoryBritish Place-NamesBuddhismBusiness and ManagementCard

5、 GamesCentury of New WordsChemistryChristian ArtChristian ChurchClassical LiteratureClassical Myth and ReligionClassical WorldComputingContemporary World History4Countries of the WorldDanceEarth SciencesEcologyEconomicsEducationEncyclopediaEngineering*English EtymologyEnglish FolkloreEnglish Grammar

6、English LanguageEnglish LiteratureEnglish SurnamesEnvironment and ConservationEuphemismsEveryday Grammar5Family and Local HistoryFinance and BankingFirst NamesFood and NutritionForeign Words and PhrasesGeographyHumorous QuotationsIdiomsIrish HistoryIslamKings and Queens of BritainLawLaw EnforcementL

7、inguisticsLiterary TermsLondon Place-NamesMathematics6MedicalMedicinal DrugsModern DesignModern QuotationsModern SlangMusicMusical TermsMusical WorksNicknamesNursingPhilosophyPhysicsPlant SciencesPlaysPocket Fowlers Modern English UsagePolitical QuotationsPolitics7PopesProverbsPsychologyQuotationsQu

8、otations by SubjectRhymesRhyming SlangSaintsScienceScientific QuotationsScottish HistoryShakespeareShips and the SeaSlangSociologySpace ExplorationStatistics8SuperstitionsSynonyms and AntonymsWeatherWord HistoriesWorld HistoryWorld MythologyWorld ReligionsZoology*forthcoming9The Concise OxfordDictio

9、nary of MathematicsFOURTH EDITIONCHRISTOPHER CLAPHAMJAMES NICHOLSON10Great Clarendon Street, OxfordOX2 6DPOxfordUniversityPressisadepartmentoftheUniversityofOxford.ItfurtherstheUniversitysobjectiveofexcellenceinresearch,scholarship,andeducationbypublishingworldwideinOxford New YorkAuckland Cape Town

10、 Dar es Salaam Hong Kong KarachiKualaLumpurMadridMelbourneMexicoCityNairobiNewDelhi Shanghai Taipei TorontoWith offices inArgentina Austria Brazil Chile Czech Republic FranceGreece Guatemala Hungary Italy Japan Poland PortugalSingaporeSouthKoreaSwitzerlandThailandTurkeyUkraineVietnamOxfordisaregiste

11、redtrademarkofOxfordUniversityPressin the UK and in certain other countriesPublished in the United Statesby Oxford University Press Inc., New York Christopher Clapham 1990, 1996 Christopher Clapham and James Nicholson 2005, 2009First edition 1990Second edition 199611Third edition 2005Fourth edition

12、2009All rights reserved. No part of this publication may bereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans,withoutthepriorpermissioninwritingofOxfordUniversityPress,orasexpresslypermittedbylaw,or under terms agreed with the appropriate reprographicsrights organization. Enquir

13、ies concerning reproductionoutside the scope of the above should be sent to the RightsDepartment, Oxford University Press, at the address aboveYou must not circulate this book in any other binding orcover and you must impose this same condition on anyacquirerBritish Library Cataloguing in Publicatio

14、n DataData availableLibrary of Congress Cataloging in Publication DataData availableTypeset by SPI Publisher Services, Pondicherry, IndiaPrinted in Great Britainon acid-free paper byClays Ltd., St Ives plcISBN 97801992359401 3 5 7 9 10 8 6 4 212ContentsPrefaceDictionaryAPPENDICES1 Table of areas and

15、 volumes2 Table of centres of mass3 Table of moments of inertia4 Table of derivatives5 Table of integrals6 Table of common ordinary differential equations andsolutions7 Table of series8 Table of convergence tests for series9 Table of common inequalities10 Table of trigonometric formulae11 Table of s

16、ymbols12 Table of Greek letters1313 Table of Roman numerals14 Table of Fields Medal Winners14ContributorsC. Chatfield, BSc, PhDR. Cheal, BScJ. B. Gavin, BSc, MScUniversity of BathJ. R. Pulham, BSc, PhDUniversity of AberdeenD. P. Thomas, BSc, PhDUniversity of Dundee15Preface to Second Edition*Thisdic

17、tionaryisintendedtobeareferencebookthatgivesreliable definitions or clear and precise explanations ofmathematicalterms.Thelevelissuchthatitwillsuit,amongothers, sixth-form pupils, college students and first-yearuniversity students who are taking mathematics as one oftheircourses.Suchstudentswillbeab

18、letolookupanytermtheymaymeetandbeledontootherentriesbyfollowingupcross-references or by browsing more generally.Theconceptsandterminologyofallthosetopicsthatfeatureinpureandappliedmathematicsandstatisticscoursesatthislevel today are covered. There are also entries onmathematicians of the past and im

19、portant mathematics ofmore general interest. Computing is not included. Thereaders attention is drawn to the appendices which giveuseful tables for ready reference.Someentriesgiveastraightdefinitioninanopeningphrase.Othersgivethedefinitionintheformofacompletesentence,sometimes following an explanati

20、on of the context. Anasterisk is used to indicate words with their own entry, towhich cross-reference can be made if required.This edition is more than half as large again as the firstedition.Asignificantchangehasbeentheinclusionofentriescoveringappliedmathematicsandstatistics.Intheseareas,Iamverymu

21、chindebtedtothecontributors,whosenamesaregiven on page v. I am most grateful to these colleagues for16their specialist advice and drafting work. They are not,however, to be held responsible for the final form of theentries on their subjects. There has also been a considerableincrease in the number o

22、f short biographies, so that all themajor names are included. Other additional entries havegreatly increased the comprehensiveness of the dictionary.Thetexthasbenefitedfromthecommentsofcolleagueswhohavereaddifferentpartsofit.Eventhoughthenamesofallofthem will not be given, I should like to acknowled

23、ge heretheir help and express my thanks.Christopher Clapham17Preface to Third EditionSince the second edition was published the content andemphasisofappliedmathematicsandstatisticsatsixth-form,college and first-year university levels has changedconsiderably. This edition includes many more appliedst

24、atisticsentriesaswellasdealingcomprehensivelywiththenew decision and discrete mathematics courses, and a largenumberofnewbiographieson20th-centurymathematicians.Iam grateful to the Headmaster and Governors of BelfastRoyalAcademyfortheirsupportandencouragementtotakeonthistask,andtoLouise,Joanne,andLa

25、urafortranscribingmy notes.James Nicholson18Preface to Fourth EditionSince the third edition was published there has been adramatic increase in both access to the internet and theamount of information available. The major change to thisedition is the introduction of a substantial number ofweblinks,

26、many of which contain dynamic or interactiveillustrations related to the definition.James Nicholson19a-Prefixmeaningnot.Forexample,anasymmetricfigureisone which possesses no symmetry, which is not symmetrical.AThe number 10 in hexadecimal notation.abacus Acountingdeviceconsistingofrodsonwhichbeadsca

27、n be moved so as to represent numbers. A description of how one abacus works.abelian groupSupposethat G isa*groupwiththeoperation.Then G isabelianiftheoperation iscommutative;thatis,if, for all elementsaandbinG, a b=b a.Abel, Niels Henrik (180229) Norwegian mathematicianwho, at the age of 19, proved

28、 that the general equation ofdegreegreaterthan4cannotbesolvedalgebraically.Inotherwords, there can be no formula for the roots of such anequation similar to the familiar formula for a quadraticequation. He was also responsible for fundamentaldevelopmentsinthetheoryofalgebraicfunctions.Hediedinsome p

29、overty at the age of 26, just a few days before hewouldhavereceivedaletterannouncinghisappointmenttoaprofessorship in Berlin.Abels test A test for the convergence of an infinite serieswhichstatesthatifan isaconvergentsequence,andbnismonoticallydecreasing,i.e. bn+1 bn forall n,thenanbn isalso converg

30、ent.20aboveGreaterthan.Thelimitofafunctionat a fromaboveisthelimitof f(x)as x a forvaluesof x a.Itisofparticularimportancewhen f(x)hasadiscontinuityat a,i.e.wherethelimitsfromaboveandfrombelowdonotcoincide.Itcanbewritten asf(a+) or .abscissaThe x-coordinateinaCartesiancoordinatesysteminthe plane.abs

31、olute address In spreadsheets a formula which is toappearinanumberofcellsmaywishtousethecontentsofanothercellorcells.Sincetherelativepositionofthosecellswill be different each time the formulaappears in a new location, the spreadsheet syntax allows anabsolute address to be specified, identifying the

32、 actual rowand column for each cell. When a formula is copied andpasted to another cell, a cell reference using an absoluteaddress will remain unchanged. A formula can contain amixture of absolute and *relative addresses.absolute error See ERROR.absolute frequency Thenumberofoccurrencesofanevent.For

33、 example, if a die is rolled 20 times and 4 sixes areobservedtheabsolutefrequencyofsixesis4andthe*relativefrequency is 4/20.absolute measure of dispersion=MEASURE OF DISPERSION.absolutely convergent series A series an is said to beabsolutely convergent if is *convergent. For21example,if thentheserie

34、sisconvergentbut not absolutely convergent, whereasis absolutely convergent.absolutely summable=ABSOLUTELY CONVERGENT.absolute value For any real number a, the absolute value(alsocalledthe*modulus)of a,denotedby|a|,is a itselfif a0,anda if a 0.Thus|a|ispositiveexceptwhen a =0.The following propertie

35、s hold:(i) |ab| = |a|b|.(ii) |a+b| |a| + |b|.(iii) |ab| |a| |b|.(iv) Fora 0, |x| aif and only if axa.absorbing state See RANDOM WALK.22absorption laws For all sets A and B (subsets of some*universalset), A (A B)= A and A (A B)= A.Theseare the absorption laws.abstract algebra The area of mathematics

36、concerned withalgebraic structures, such as *groups, *rings and *fields,involving sets of elements with particular operationssatisfyingcertainaxioms.Thepurposeistoderive,fromtheset of axioms, general results that are then applicable toanyparticularexampleofthealgebraicstructureinquestion.Thetheoryof

37、certainalgebraicstructuresishighlydeveloped;inparticular,thetheoryofvectorspacesissoextensivethatitsstudy,knownas*linearalgebra,wouldprobablynolongerbe classified as abstract algebra.abstractionTheprocessofmakingageneralstatementwhichsummarizeswhatcanbeobservedinparticularinstances.Forexample,wecans

38、aythat x2 x for x1. Mathematical theorems are essentiallyabstraction of concepts to a higher level.abundant numberAnintegerthatissmallerthanthesumofits positive divisors, not including itself, For example, 12 isdivisible by 1, 2, 3, 4 and 6, and 1 + 2 + 3 + 4 + 6 = 16 12.acceleration Suppose that a

39、particle is moving in a straightline, with a point O on the line taken as origin and onedirectiontakenaspositive.Let x bethe*displacementoftheparticleattime t.Theaccelerationoftheparticleisequaltoor d2x/dt2,the*rateofchangeofthe*velocitywithrespecttot.Ifthevelocityispositive(thatis,iftheparticleismo

40、vinginthe positive direction), the acceleration is positive when theparticleisspeedingupandnegativewhenitisslowingdown.23However, if the velocity is negative, a positive accelerationmeans that the particle is slowing down and a negativeacceleration means that it is speeding up.In the preceding parag

41、raph, a common convention has beenfollowed, in which the unit vector i in the positive directionalong the line has been suppressed. Acceleration is in fact avector quantity, and in the one-dimensional case above it isequal to i.When the motion is in two or three dimensions, vectors areused explicitl

42、y. The acceleration a of a particle is a vectorequaltotherateofchangeofthevelocity vwithrespectto t.Thus a = dv/dt. If the particle has *position vector r, then.WhenCartesiancoordinatesareused, r = xi+yj+zk, and then .Ifaparticleistravellinginacirclewithconstantspeed,itstillhas an acceleration becau

43、se of the changing direction of thevelocity.Thisaccelerationistowardsthecentreofthecircleandhasmagnitude where v isthespeedoftheparticleandris the radius of the circle.Acceleration has the dimensions LT2, and the SI unit ofmeasurementisthemetrepersecondpersecond,abbreviatedto ms2.accelerationtime gr

44、aph A graph that shows accelerationplotted against time for a particle moving in a straight line.Let v(t)anda(t)bethevelocityandacceleration,respectively,of the particle at time t. The accelerationtime graph is thegraph y = a(t),wherethe t-axisishorizontalandthe y-axisis24vertical with the positive

45、direction upwards. With theconventionthatanyareabelowthehorizontalaxisisnegative,the areaunderthegraphbetween t = t1 and t = t2 isequalto v(t2)v(t1). (Here a common convention has been followed, inwhichtheunitvectoriinthepositivedirectionalongthelinehas been suppressed. The velocity and acceleration

46、 of theparticle are in fact vector quantities equal to v(t)i and a(t)i,respectively.)acceptance region See HYPOTHESIS TESTING.acceptance sampling A method of quality control where asampleistakenfromabatchandadecisionwhethertoacceptthe batch is made on the basis of the quality of the sample.The most

47、simple method is to have a straight accept/rejectcriterion,butamoresophisticatedapproachistotakeanothersample if the evidence from the existing sample, or a set ofsamples,isnotclearlyindicatingwhetherthebatchshouldbeaccepted or rejected. One of the main advantages of thisapproach is reducing the cos

48、t of taking samples to satisfyquality control criteria.accuracyAmeasureoftheprecisionofanumericalquantity,usuallygivento n *significantfigures(wheretheproportionalaccuracyistheimportantaspect)or n *decimalplaces(wherethe absolute accuracy is more important).accurate (correct) to n decimal places Rou

49、ndinganumberwiththeaccuracyspecifiedbythenumberof*decimalplacesgiven in the rounded value. So e = 2.71828 = 2.718 tothree decimal places and = 2.72 to two decimal places.25is9.30correcttotwodecimalplaces.Whereanumberofquantitiesarebeingmeasuredandaddedor subtracted, using values correct to the same number ofdecimal places ensures that they have the same degree ofaccuracy. However, if the units are changed, for examplebetween centimetres and metres, then the accuracy of themeasurement

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报