ImageVerifierCode 换一换
格式:PDF , 页数:57 ,大小:6.56MB ,
资源ID:6230199      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-6230199.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Druid 实时分析架构设计思路—Imply.pdf)为本站会员(HR专家)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

Druid 实时分析架构设计思路—Imply.pdf

1、DRUIDINTERACTIVE EXPLORATORY ANALYTICS AT SCALEFANGJIN YANG DRUID COMMITTEROVERVIEWDEMO SEE SOME NEAT THINGS MOTIVATION WHY DRUID? ARCHITECTURE PICTURES WITH ARROWS COMMUNITY CONTRIBUTE TO DRUID 2013THE PROBLEMArbitrary and interactive exploration of time series data Ad-tech, system/app metrics, net

2、work/website traffic analysis Multi-tenancy: lots of concurrent users Scalability: 10+ TB/day, ad-hoc queries on trillions of events Recency matters! Real-time analysisDEMOIN CASE THE INTERNET DIDNT WORK PRETEND YOU SAW SOMETHING COOL2015REQUIREMENTSScalable & highly available Real-time data ingesti

3、on Arbitrary data exploration with ad-hoc queries Sub-second queries Many concurrent reads2015FINDING A SOLUTIONLoad all your data into Hadoop. Query it. Done! Good job guys, lets go home2015FINDING A SOLUTIONHadoopEvent StreamsInsight2015PROBLEMS WITH THE NAIVE SOLUTIONMapReduce can handle almost e

4、very distributed computing problem MapReduce over your raw data is flexible but slow Hadoop is not optimized for query latency To optimize queries, we need a query layer2015FINDING A SOLUTIONHadoop (pre-processing and storage) Query LayerHadoopEvent StreamsInsight2015MAKE QUERIES FASTERWhat types of

5、 queries to optimize for? Business intelligence/OLAP/pivot tables queries Aggregations, filters, groupBysWHAT WE TRIED2015FINDING A SOLUTIONHadoop (pre-processing and storage) RDBMS?HadoopEvent StreamsInsight2015Common solution in data warehousing: Star Schema Aggregate Tables Query CachingI. RDBMS

6、- THE SETUP2015Queries that were cached fast Queries against aggregate tables fast to acceptable Queries against base fact table generally unacceptableI. RDBMS - THE RESULTS2015I. RDBMS - PERFORMANCENaive benchmark scan rate 5.5M rows / second / core 1 day of summarized aggregates 60M+ rows 1 query

7、over 1 week, 16 cores 5 seconds Page load with 20 queries over a week of datalong time2015FINDING A SOLUTIONHadoop (pre-processing and storage)NoSQL K/V Stores?HadoopEvent StreamsInsight2015Pre-aggregate all dimensional combinations Store results in a NoSQL storeII. NOSQL - THE SETUPtsgender age rev

8、enue1 M 18 $0.151 F 25 $1.031 F 18 $0.01Key Value1 revenue=$1.191,M revenue=$0.151,F revenue=$1.041,18 revenue=$0.161,25 revenue=$1.031,M,18 revenue=$0.151,F,18 revenue=$0.011,F,25 revenue=$1.032015Queries were fast range scan on primary key Inflexible not aggregated, not available Does not work wel

9、l with streamsII. NOSQL - THE RESULTS2015Processing scales exponentially! Example: 500k records Precompute 11 dimensions 4.5 hours on a 15-node Hadoop cluster Precompute 14 dimensions 9 hours on a 25-node Hadoop clusterII. NOSQL - PERFORMANCE2015FINDING A SOLUTIONHadoop (pre-processing and storage)C

10、ommercial DatabasesHadoopEvent StreamsInsightDRUID AS A QUERY LAYER2013KEY FEATURES LOW LATENCY INGESTION FAST AGGREGATIONS ARBITRARY SLICE-N-DICE CAPABILITIES HIGHLY AVAILABLE APPROXIMATE & EXACT CALCULATIONSDRUIDDATA STORAGE2015DATA!timestamp page language city country . added deleted2011-01-01T00

11、:01:35Z Justin Bieber en SF USA 10 652011-01-01T00:03:63Z Justin Bieber en SF USA 15 622011-01-01T00:04:51Z Justin Bieber en SF USA 32 452011-01-01T01:00:00Z Ke$ha en Calgary CA 17 872011-01-01T02:00:00Z Ke$ha en Calgary CA 43 992011-01-01T02:00:00Z Ke$ha en Calgary CA 12 53.2015PARTITION DATAtimest

12、amp page language city country . added deleted2011-01-01T00:01:35Z Justin Bieber en SF USA 10 652011-01-01T00:03:63Z Justin Bieber en SF USA 15 622011-01-01T00:04:51Z Justin Bieber en SF USA 32 452011-01-01T01:00:00Z Ke$ha en Calgary CA 17 872011-01-01T02:00:00Z Ke$ha en Calgary CA 43 992011-01-01T0

13、2:00:00Z Ke$ha en Calgary CA 12 53Shard data by time Immutable chunks of data called “segments”Segment 2011-01-01T02/2011-01-01T03Segment 2011-01-01T01/2011-01-01T02Segment 2011-01-01T00/2011-01-01T012015IMMUTABLE SEGMENTSFundamental storage unit in Druid No contention between reads and writes One t

14、hread scans one segment Multiple threads can access same underlying data2015COLUMNAR STORAGEScan/load only what you need Compression! Indexes!timestamp page language city country . added deleted2011-01-01T00:01:35Z Justin Bieber en SF USA 10 652011-01-01T00:03:63Z Justin Bieber en SF USA 15 622011-0

15、1-01T00:04:51Z Justin Bieber en SF USA 32 452011-01-01T01:00:00Z Ke$ha en Calgary CA 17 872011-01-01T02:00:00Z Ke$ha en Calgary CA 43 992011-01-01T02:00:00Z Ke$ha en Calgary CA 12 53.2015COLUMN COMPRESSION DICTIONARIESCreate ids Justin Bieber - 0, Ke$ha - 1 Store page - 0 0 0 1 1 1 language - 0 0 0

16、0 0 0 timestamp page language city country . added deleted2011-01-01T00:01:35Z Justin Bieber en SF USA 10 652011-01-01T00:03:63Z Justin Bieber en SF USA 15 622011-01-01T00:04:51Z Justin Bieber en SF USA 32 452011-01-01T01:00:00Z Ke$ha en Calgary CA 17 872011-01-01T02:00:00Z Ke$ha en Calgary CA 43 99

17、2011-01-01T02:00:00Z Ke$ha en Calgary CA 12 53.2015BITMAP INDICESJustin Bieber - 0, 1, 2 - 111000 Ke$ha - 3, 4, 5 - 000111 timestamp page language city country . added deleted2011-01-01T00:01:35Z Justin Bieber en SF USA 10 652011-01-01T00:03:63Z Justin Bieber en SF USA 15 622011-01-01T00:04:51Z Just

18、in Bieber en SF USA 32 452011-01-01T01:00:00Z Ke$ha en Calgary CA 17 872011-01-01T02:00:00Z Ke$ha en Calgary CA 43 992011-01-01T02:00:00Z Ke$ha en Calgary CA 12 53.2015FAST AND FLEXIBLE QUERIESJUSTIN BIEBER 1, 1, 0, 0KE$HA 0, 0, 1, 1JUSTIN BIEBER OR KE$HA 1, 1, 1, 1rowpage0Justin(Bieber1Justin(Bieber2Ke$ha3Ke$ha

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报