ImageVerifierCode 换一换
格式:PPT , 页数:66 ,大小:6.89MB ,
资源ID:6212922      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-6212922.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Basic_Elements_and_Phasors.ppt)为本站会员(saw518)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

Basic_Elements_and_Phasors.ppt

1、The Basic Elements and Phasors,OBJECTIVES,Become familiar with the response of a resistor, an inductor, and a capacitor to the application of a sinusoidal voltage or current. Learn how to apply the phasor format to add and subtract sinusoidal waveforms. Understand how to calculate the real power to

2、resistive elements and the reactive power to inductive and capacitive elements. Become aware of the differences between the frequency response of ideal and practical elements. Become proficient in the use of a calculator to work with complex numbers.,DERIVATIVE,To understand the response of the basi

3、c R, L, and C elements to a sinusoidal signal, you need to examine the concept of the derivative in some detail.If x fails to change at a particular instant, dx = 0, and the derivative is zero.,DERIVATIVE,FIG. 14.1 Defining those points in a sinusoidal waveform that have maximum and minimum derivati

4、ves.,DERIVATIVE,FIG. 14.2 Derivative of the sine wave of Fig. 14.1.,DERIVATIVE,FIG. 14.3 Effect of frequency on the peak value of the derivative.,RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,Resistor Inductor Capacitor,FIG. 14.4 Determining the sinusoidal response for a

5、resistive element.,RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,FIG. 14.5 The voltage and current of a resistive element are in phase.,RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,FIG. 14.6 Defining the opposition of an element to the flow of

6、 charge through the element.,FIG. 14.7 Defining the parameters that determine the opposition of an inductive element to the flow of charge.,RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,FIG. 14.8 Investigating the sinusoidal response of an inductive element.,FIG. 14.9 For

7、 a pure inductor, the voltage across the coil leads the current through the coil by 90.,RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,FIG. 14.10 Defining the parameters that determine the opposition of a capacitive element to the flow of charge.,RESPONSE OF BASIC R, L, AN

8、D C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,FIG. 14.11 Investigating the sinusoidal response of a capacitive element.,FIG. 14.12 The current of a purely capacitive element leads the voltage across the element by 90.,RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,FIG. 1

9、4.13 Example 14.1(a).,FIG. 14.14 Example 14.1(b).,RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,FIG. 14.15 Example 14.3(a).,FIG. 14.16 Example 14.3(b).,RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT,FIG. 14.17 Example 14.5.,FIG. 14.18 Example 14

10、.7.,FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response,Resistor R Inductor L Capacitor C,FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response,FIG. 14.19 R versus f for the range of interest.,FIG. 14.20 XL versus frequency.,FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response,FIG. 14.21 Ef

11、fect of low and high frequencies on the circuit model of an inductor.,FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response,FIG. 14.22 XC versus frequency.,FREQUENCY RESPONSE OF THE BASIC ELEMENTS Ideal Response,FIG. 14.23 Effect of low and high frequencies on the circuit model of a capacitor.,FRE

12、QUENCY RESPONSE OF THE BASIC ELEMENTS Practical Response,Resistor R Inductor L Capacitor C ESR,FREQUENCY RESPONSE OF THE BASIC ELEMENTS Practical Response,FIG. 14.24 Typical resistance-versus-frequency curves for carbon composition resistors.,FREQUENCY RESPONSE OF THE BASIC ELEMENTS Practical Respon

13、se,FIG. 14.25 Practical equivalent for an inductor.,FIG. 14.26 ZL versus frequency for the practical inductor equivalent of Fig. 14.25.,FREQUENCY RESPONSE OF THE BASIC ELEMENTS Practical Response,FIG. 14.27 Practical equivalent for a capacitor; (a) network; (b) response.,FREQUENCY RESPONSE OF THE BA

14、SIC ELEMENTS Practical Response,FIG. 14.28 ESR. (a) Impact on equivalent model; (b) Measuring instrument.,AVERAGE POWER AND POWER FACTOR,FIG. 14.29 Demonstrating that power is delivered at every instant of a sinusoidal voltage waveform (except vR = 0V).,AVERAGE POWER AND POWER FACTOR,FIG. 14.30 Powe

15、r versus time for a purely resistive load.,AVERAGE POWER AND POWER FACTOR,FIG. 14.31 Determining the power delivered in a sinusoidal ac network.,AVERAGE POWER AND POWER FACTOR,FIG. 14.32 Defining the average power for a sinusoidal ac network.,AVERAGE POWER AND POWER FACTOR,Resistor Inductor Capacito

16、r Power Factor,AVERAGE POWER AND POWER FACTOR,FIG. 14.33 Purely resistive load with Fp = 1.,FIG. 14.34 Purely inductive load with Fp = 0.,AVERAGE POWER AND POWER FACTOR,FIG. 14.35 Example 14.12(a).,FIG. 14.36 Example 14.12(b).,AVERAGE POWER AND POWER FACTOR,FIG. 14.37 Example 14.12(c).,COMPLEX NUMBE

17、RS,A complex number represents a point in a two-dimensional plane located with reference to two distinct axes. This point can also determine a radius vector drawn from the origin to the point. The horizontal axis is called the real axis, while the vertical axis is called the imaginary axis.,COMPLEX

18、NUMBERS,FIG. 14.38 Defining the real and imaginary axes of a complex plane.,RECTANGULAR FORM,The format for the rectangular form is:,RECTANGULAR FORM,FIG. 14.39 Defining the rectangular form.,FIG. 14.40 Example 14.13(a).,RECTANGULAR FORM,FIG. 14.41 Example 14.13(b).,FIG. 14.42 Example 14.13(c).,POLA

19、R FORM,The format for the polar form is:,POLAR FORM,FIG. 14.43 Defining the polar form.,FIG. 14.44 Demonstrating the effect of a negative sign on the polar form.,POLAR FORM,FIG. 14.45 Example 14.14(a).,FIG. 14.46 Example 14.14(b).,POLAR FORM,FIG. 14.47 Example 14.14(c).,CONVERSION BETWEEN FORMS,Rect

20、angular to Polar Polar to Rectangular,FIG. 14.48 Conversion between forms.,CONVERSION BETWEEN FORMS,FIG. 14.49 Example 14.15.,FIG. 14.50 Example 14.16.,CONVERSION BETWEEN FORMS,FIG. 14.51 Example 14.17.,FIG. 14.52 Example 14.18.,MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS,Complex Conjugate Reciproc

21、al Addition Subtraction Multiplication Division,MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS,FIG. 14.53 Defining the complex conjugate of a complex number in rectangular form.,FIG. 14.54 Defining the complex conjugate of a complex number in polar form.,MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS,FI

22、G. 14.55 Example 14.19(a).,FIG. 14.56 Example 14.19(b).,MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS,FIG. 14.57 Example 14.20(a).,FIG. 14.58 Example 14.20(b).,MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS,FIG. 14.59 Example 14.21(a).,FIG. 14.60 Example 14.21(b).,CALCULATOR METHODS WITH COMPLEX NUMBER

23、S Calculators,FIG. 14.61 TI-89 scientific calculator.,CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators,FIG. 14.62 Setting the DEGREE mode on the TI-89 calculator.,CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators,Rectangular to Polar Conversion,FIG. 14.63 Converting 3 + j 5 to the polar form us

24、ing the TI-89 calculator.,CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators,Polar to Rectangular Conversion,FIG. 14.64 Converting 53.1 to the rectangular form using the TI 89 calculator.,CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators,Mathematical Operations,FIG. 14.65 Performing the operation

25、 (10 50)(2 20).,CALCULATOR METHODS WITH COMPLEX NUMBERS Calculators,FIG. 14.66 Performing the operation (53.1)(2 + j 2).,FIG. 14.67 Verifying the results of Example 14.26(c).,PHASORS,FIG. 14.68 Adding two sinusoidal waveforms on a point-by-point basis.,PHASORS,FIG. 14.69 (a) The phasor representatio

26、n of the sinusoidal waveforms of part (b); (b) finding the sum of two sinusoidal waveforms of v1 and v2.,PHASORS,FIG. 14.70 Adding two sinusoidal currents with phase angles other than 90.,PHASORS,FIG. 14.72 Example 14.29.,PHASORS,FIG. 14.73 Solution to Example 14.29.,PHASORS,FIG. 14.74 Example 14.30

27、.,PHASORS,FIG. 14.75 Solution to Example 14.30.,COMPUTER ANALYSIS PSpice,FIG. 14.76 Using PSpice to analyze the response of a capacitor to a sinusoidal ac signal.,COMPUTER ANALYSIS PSpice,FIG. 14.77 A plot of the voltage, current, and power for the capacitor in Fig. 14.76.,COMPUTER ANALYSIS Multisim,FIG. 14.78 Using Multisim to review the response of an inductive element to a sinusoidal ac signal.,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报