1、8.2 幂的乘方与积的乘方(2)教案 苏科版七年级数学下册课时编号备课时间课 题 8.2 幂的乘方和积的乘方(2)教学目标1、经历积的乘方运算性质 的探索过程,进一步理解幂的意义;2、使学生能灵活地运用积的乘 方法则进行计算,并会解决一些实际问 题; 3、通过法则的推导过程培养学生分析问题、解决问题的能力;4、从中感受具体到抽象、特殊到一般的思考方法,发展数感和归纳的能力教学重点 法则的理解与掌握教学难点 法则的灵活运用教 学 过 程教学内容 教师活动 学生活动动手做一做:计算:2 50.55(1)(32) 3=_,3323=_.(2)3(-2)3=_,33(-2) 3=_.(3)( )3=_
2、21( )3( )3=_.思考:1 从上面的计算中你发现了什么?与同学交流。2 换几个数再试试。3 猜想(32) n(n 是正整数) 、(ab)n的结果。探索活动:通过计算思考:1 、从上面的计算中你发现了什么?与同学交流。2、 换几个数再试试。3、 猜想(32) n(n 是正整数) 、(ab)n的结果。(32)n=(32)(32)前面我们研究了同底数幂的乘法,幂的乘方并得到相应的法则,根据事物的发展,以下应研究一个单项式的乘方问题,如(2a 3)4,怎样计算呢?这就是积的乘方所要解决的问题(板书课题).引导学生剖析积的乘方法则练一练观察交流猜想探出规律用语言表述出从上面的计算于是我们得到了积
3、的乘方法则:(ab)na nbn(n 是正整数)(32)n 个=(333) n 个(222)n 个(ab)n(ab)(ab)(ab)n 个(aaa)(bbb)n 个 n 个=anbn这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘(1)三个或三个以上的积的乘方,也具有这一性质,如(abc) na nbncn(2)a,b 与前面几个公式一样,可以表示具体的数,也可以表示一个代数式例 1 计算:(1)(5m )3; (2)(-xy 2)3; 巩固练习1.P55 练一练 22.例 2 计算:(1)(3xy2)2; (2)(-2ab 3c2)4解:(1)(3xy 2)2=32x2(y2)2=9x2y4;(2)(-2ab3c2)4 =(-2)4a4(b3)4(c2)4=16a4b12c8.教师板演,并要求学生说出每一步的根据是什么根据学生板演的情况,提醒学生注意运算步骤,先进行积的乘方,后作因数幂的乘方 解:(1)(5m)35 3m3125m 3; (2)(- xy2)3(-1) 3x3(y2)3-x 3y6.(1)系数的乘方;(2)因数中若有幂的形式,要注意运算步骤,先进行积的乘方,后作因数幂的乘方先由学生 观察 、讨论解题的方法板书设计情境创设1、2、例 1: 例 2: 习题作业布置课后随笔课时编号 4备课时间