ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:1.28MB ,
资源ID:5819885      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5819885.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(_1 中值定理.ppt)为本站会员(hskm5268)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

_1 中值定理.ppt

1、一、罗尔( Rolle )定理,2.3.1,二、拉格朗日中值定理,三、柯西(Cauchy)中值定理,中值定理,费马(fermat)引理,一、罗尔( Rolle )定理,且,存在,证: 设,则,证毕,罗尔( Rolle )定理,满足:,(1) 在区间 a , b 上连续,(2) 在区间 (a , b) 内可导,(3) f ( a ) = f ( b ),使,证:,故在 a , b 上取得最大值,M 和最小值 m .,若 M = m , 则,因此,若 M m , 则 M 和 m 中至少有一个与端点值不等,不妨设,则至少存在一点,使,注意:,1) 定理条件条件不全具备, 结论不一定成立.,例如,则由

2、费马引理得,使,2) 定理条件只是充分的.,本定理可推广为,在 ( a , b ) 内可导, 且,在( a , b ) 内至少存在一点,证明提示: 设,证 F(x) 在 a , b 上满足罗尔定理 .,一条连续曲线,除端点外处处有不垂直于x轴的切线,且两端点的纵坐标相等.,若定理条件不满足,则结论不一定成立.,罗尔定理的几何解释:,则在曲线上至少有一点C,在该点处切线水平.,例1. 证明方程,有且仅有一个小于1 的,正实根 .,证: 1) 存在性 .,则,在 0 , 1 连续 ,且,由介值定理知存在,使,即方程有小于 1 的正根,2) 唯一性 .,假设另有,为端点的区间满足罗尔定理条件 ,至少

3、存在一点,但,矛盾,故假设不真!,设,例2 设,且在,内可导, 证明至少存,在一点,使,提示:,由结论可知, 只需证,即,验证,在,上满足罗尔定理条件.,设,二、拉格朗日中值定理,(1) 在区间 a , b 上连续,满足:,(2) 在区间 ( a , b ) 内可导,至少存在一点,使,思路: 利用逆向思维找出一个满足罗尔定理条件的函数,作辅助函数,显然 ,在 a , b 上连续 ,在 ( a , b ) 内可导,且,证:,问题转化为证,由罗尔定理知至少存在一点,即定理结论成立 .,证毕,几何解释:,拉格朗日中值公式,注意:拉氏公式精确地表达了函数在一个区间上的增量与函数在这区间内某点处的导数之

4、间的关系.,拉格朗日中值定理又称有限增量定理.,拉格朗日中值公式又称有限增量公式.,微分中值定理,推论,例3. 证明等式,证: 设,由推论可知,(常数),令 x = 0 , 得,又,故所证等式在定义域 上成立.,自证:,经验:,欲证,时,只需证在 I 上,例4. 证明不等式,证: 设,中值定理条件,即,因为,故,因此应有,三、柯西(Cauchy)中值定理,分析:,及,(1) 在闭区间 a , b 上连续,(2) 在开区间 ( a , b ) 内可导,(3)在开区间 ( a , b ) 内,至少存在一点,使,满足 :,要证,证: 作辅助函数,且,使,即,由罗尔定理知, 至少存在一点,思考: 柯西

5、定理的下述证法对吗 ?,两个 不 一定相同,错!,上面两式相比即得结论.,柯西定理的几何意义:,注意:,弦的斜率,切线斜率,例5. 设,至少存在一点,使,证: 结论可变形为,设,则,在 0, 1 上满足柯西中值,定理条件,因此在 ( 0 , 1 ) 内至少存在一点 ,使,即,证明,内容小结,1. 微分中值定理的条件、结论及关系,罗尔定理,拉格朗日中值定理,柯西中值定理,2. 微分中值定理的应用,(1) 证明恒等式,(2) 证明不等式,(3) 证明有关中值问题的结论,关键:利用逆向思维 设辅助函数,费马引理,思考与练习,1. 填空题,1) 函数,在区间 1, 2 上满足拉格朗日定理,条件, 则中值,2) 设,有,个根 , 它们分别在区间,上.,方程,2. 若,可导, 试证在其两个零点间一定有,的零点.,提示:,设,欲证:,使,只要证,亦即,作辅助函数,验证,在,上满足,罗尔定理条件.,备用题,求证存在,使,1. 设,可导,且,在,连续,,证:,因此至少存在,显然,在 上满足罗尔定理条件,即,设辅助函数,使得,设,证明对任意,有,证:,2.,不妨设,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报