ImageVerifierCode 换一换
格式:PPT , 页数:30 ,大小:782.50KB ,
资源ID:5750603      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5750603.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(概率图模型导论——概率论与图论相结合61136.ppt)为本站会员(dzzj200808)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

概率图模型导论——概率论与图论相结合61136.ppt

1、第十讲 概率图模型导论 Chapter 10 Introduction to Probabilistic Graphical Models,Weike Pan, and Congfu Xu panweike, Institute of Artificial Intelligence College of Computer Science, Zhejiang UniversityOctober 12, 2006,浙江大学计算机学院人工智能引论课件,References,An Introduction to Probabilistic Graphical Models. Michael I. Jo

2、rdan. http:/www.cs.berkeley.edu/jordan/graphical.html,Outline,Preparations Probabilistic Graphical Models (PGM) Directed PGM Undirected PGM Insights of PGM,Outline,Preparations PGM “is” a universal model Different thoughts of machine learning Different training approaches Different data types Bayesi

3、an Framework Chain rules of probability theory Conditional Independence Probabilistic Graphical Models (PGM) Directed PGM Undirected PGM Insights of PGM,Different thoughts of machine learning,Statistics (modeling uncertainty, detailed information) vs. Logics (modeling complexity, high level informat

4、ion)Unifying Logical and Statistical AI. Pedro Domingos, University of Washington. AAAI 2006.Speech: Statistical information (Acoustic model + Language model + Affect model) + High level information (Expert/Logics),Different training approaches,Maximum Likelihood Training: MAP (Maximum a Posteriori)

5、vs. Discriminative Training: Maximum Margin (SVM)Speech: classical combination Maximum Likelihood + Discriminative Training,Different data types,Directed acyclic graph (Bayesian Networks, BN) Modeling asymmetric effects and dependencies: causal/temporal dependence (e.g. speech analysis, DNA sequence

6、 analysis)Undirected graph (Markov Random Fields, MRF) Modeling symmetric effects and dependencies: spatial dependence (e.g. image analysis),PGM “is” a universal model,To model both temporal and spatial data, by unifying Thoughts: Statistics + Logics Approaches: Maximum Likelihood Training + Discrim

7、inative Training Further more, the directed and undirected models together provide modeling power beyond that which could be provided by either alone.,Bayesian Framework,What we care is the conditional probability, and its is a ratio of two marginal probabilities.,A posteriori probability,Likelihood

8、,Priori probability,Class i,Normalization factor,Observation,Problem descriptionObservation Conclusion (classification or prediction),Bayesian rule,Chain rules of probability theory,Conditional Independence,Outline,Preparations Probabilistic Graphical Models (PGM) Directed PGM Undirected PGM Insight

9、s of PGM,PGM,Nodes represent random variables/states The missing arcs represent conditional independence assumptions The graph structure implies the decomposition,Directed PGM (BN),Representation,Conditional Independence,Probability Distribution,Queries,Implementation,Interpretation,Probability Dist

10、ribution,Definition of Joint Probability Distribution,Check:,Representation,Graphical models represent joint probability distributions more economically, using a set of “local” relationships among variables.,Conditional Independence (basic),Assert the conditional independence of a node from its ance

11、stors, conditional on its parents.,Interpret missing edges in terms of conditional independence,Conditional Independence (3 canonical graphs),Classical Markov chain “Past”, “present”, “future”,Common cause Y “explains” all the dependencies between X and Z,Marginal Independence,Common effectMultiple,

12、 competing explanation,Conditional Independence,Conditional Independence (check),One incoming arrow and one outgoing arrow,Two outgoing arrows,Two incoming arrows,Check through reachability,Bayes ball algorithm (rules),Outline,Preparations Probabilistic Graphical Models (PGM) Directed PGM Undirected

13、 PGM Insights of PGM,Undirected PGM (MRF),Representation,Conditional Independence,Probability Distribution,Queries,Implementation,Interpretation,Probability Distribution(1),Clique A clique of a graph is a fully-connected subset of nodes. Local functions should not be defined on domains of nodes that

14、 extend beyond the boundaries of cliques.Maximal cliques The maximal cliques of a graph are the cliques that cannot be extended to include additional nodes without losing the probability of being fully connected. We restrict ourselves to maximal cliques without loss of generality, as it captures all

15、 possible dependencies.Potential function (local parameterization): potential function on the possible realizations of the maximal clique,Probability Distribution(2),Maximal cliques,Probability Distribution(3),Joint probability distributionNormalization factor,Boltzman distribution,Conditional Indep

16、endence,Its a “reachability” problem in graph theory.,Representation,Outline,Preparations Probabilistic Graphical Models (PGM) Directed PGM Undirected PGM Insights of PGM,Insights of PGM (Michael I. Jordan),Probabilistic Graphical Models are a marriage between probability theory and graph theory. A

17、graphical model can be thought of as a probabilistic database, a machine that can answer “queries” regarding the values of sets of random variables. We build up the database in pieces, using probability theory to ensure that the pieces have a consistent overall interpretation. Probability theory als

18、o justifies the inferential machinery that allows the pieces to be put together “on the fly” to answer the queries. In principle, all “queries” of a probabilistic database can be answered if we have in hand the joint probability distribution.,Insights of PGM (data structure & algorithm),A graphical model is a natural/perfect tool for representation(数据结构) and inference (算法).,Thanks!,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报