ImageVerifierCode 换一换
格式:DOC , 页数:40 ,大小:1.49MB ,
资源ID:5715030      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5715030.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第三版详细《概率论与数理统计》课后习题答案.-.doc)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

第三版详细《概率论与数理统计》课后习题答案.-.doc

1、- 1 -习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时 , 连续 5 次都命中, 观察其投篮次数;解:连续 5 次都命中,至少要投 5 次以上,故 ;,7651(2) 掷一颗匀称的骰子两次 , 观察前后两次出现的点数之和 ;解: ;124,32(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从 0 到无穷,所以 ;,2103(4) 从编号为 1,2,3,4,5 的 5 件产品中任意取出两件, 观察取出哪两件产品;解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:;,4jij(5) 检查两件产品是否合格 ;解:用 0 表示合格,

2、 1 表示不合格,则 ;1,0,5(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于 T1, 最高气温不高于 T2);解:用 表示最低气温, 表示最高气温;考虑到这是一个二维的样本空间,故:xy;216,Tx(7) 在单位圆内任取两点 , 观察这两点的距离 ;解: ;07x(8) 在长为 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.l解: ;lyxxy081.2 (1) A 与 B 都发生, 但 C 不发生; ;AB(2) A 发生, 且 B 与 C 至少有一个发生; ;)(C(3) A,B,C 中至少有一个发生; ;- 2 -(4) A,B,C 中恰有一个发生;

3、;CBABA(5) A,B,C 中至少有两个发生; ;(6) A,B,C 中至多有一个发生; ;(7) A;B;C 中至多有两个发生; ABC(8) A,B,C 中恰有两个发生. ;注意:此类题目答案一般不唯一,有不同的表示方式。1.3 设样本空间 , 事件 = ,20xA15.0x6.18.0xB具体写出下列各事件:(1) ; (2) ; (3) ; (4) ABB(1 ) ;18.0x(2) = ;.5(3) = ; BA28.0xx(4) = 6.1501.6 按从小到大次序排列 , 并说明理由.)(),(,(), BPABAP解:由于 故 ,而由加法公式,有:,AB)()(P1.7 解

4、:(1) 昆虫出现残翅或退化性眼睛对应事件概率为: 175.0)()()( WEPEWP- 3 -(2) 由于事件 可以分解为互斥事件 ,昆虫出现残翅, 但没有退化性眼睛对应事WEW件 概率为: 1.0)()(PEP(3) 昆虫未出现残翅 , 也无退化性眼睛的概率为: .8250)(1)(EWP1.8 解:(1) 由于 ,故 显然当 时 P(AB) BA, ),(),(BAPA取到最大值。 最大值是 0.6.(2) 由于 。显然当 时 P(AB) 取到最小)()()(P 1)(值,最小值是 0.4.1.9 解:因为 P(AB) = 0,故 P(ABC) = 0. 至少有一个发生的概率为:CBA

5、, 7.0)()()()()()( ABCPBCPPCBAP1.10 解(1 ) 通过作图,可以知道, 3.0)()(BPABP(2 ) 61)()(ABP7.0)(1)()( )()(1)3 AB由 于1.11 解:用 表示事件“杯中球的最大个数为 个” =1,2,3。三只球放入四只杯中,放法有iAi种,每种放法等可能。46- 4 -对事件 :必须三球放入三杯中,每杯只放一球。放法 432 种,故1A 83)(1AP(选排列:好比 3 个球在 4 个位置做排列) 。对事件 :必须三球都放入一杯中。放法有 4 种。(只需从 4 个杯中选 1 个杯子,放入此3A3 个球,选法有 4 种) ,故

6、。16)(3AP69183)21.12解:此题为典型的古典概型,掷一颗匀称的骰子两次基本事件总数为 36。.出现点数和为“3”对应两个基本事件(1,2),(2 ,1)。故前后两次出现的点数之和为 3 的概率为。8同理可以求得前后两次出现的点数之和为 4,5 的概率各是 。91,2(1) 1.13 解:从 10 个数中任取三个数,共有 种取法,亦即基本事件总数为 120。1203C(1) 若要三个数中最小的一个是 5,先要保证取得 5,再从大于 5 的四个数里取两个,取法有 种,故所求概率为 。624C20(2) 若要三个数中最大的一个是 5,先要保证取得 5,再从小于 5 的五个数里取两个,取

7、法有 种,故所求概率为 。1025 11.14 解:分别用 表示事件:321,A(1) 取到两只黄球 ; (2) 取到两只白球; (3) 取到一只白球, 一只黄球.则。,16)(,3468)( 21421 CPCP 316)()(213APAP1.15 - 5 -解: )()()( BPABPAP由于 ,故0)(B 5.0)()()( 1.16(1) (2));(BAP);(BAP解:(1) ;8.054.1)(1)( BAPAP(2) ;6)()(注意:因为 ,所以 。5.0BAP5.0)(1(BAP1.17 解:用 表示事件“第 次取到的是正品”( ),则 表示事件“第 次取到的i i 3

8、,21ii i是次品”( )。3,211 12153421(),()()20498PAPAPA(1) 事件“在第一、第二次取到正品的条件下, 第三次取到次品 ”的概率为:。3125()8PA(2) 事件“第三次才取到次品”的概率为:1231213125435()()()09182PA(3 ) 事件“第三次取到次品 ”的概率为:此题要注意区分事件(1)、 (2)的区别,一个是求条件概率,一个是一般的概率。再例如,设有两个产品,一个为正品,一个为次品。用 表示事件 “第 次取到的是正品”(iAi),2,i- 6 -则事件“在第一次取到正品的条件下, 第二次取到次品”的概率为: ;而事件1)(2AP

9、“第二次才取到次品”的概率为: 。区别是显然的。1)()(2121AP1.18。解:用 表示事件“在第一箱中取出两件产品的次品数 ”。用 表示事件“从)2,10(iA iB第二箱中取到的是次品”。则 21 212044146(),(),(),999CCCPPPA, , ,0()2BA1()BA23()根据全概率公式,有: 283)()()()( 2100 ABPPP1.19解:设 表示事件“所用小麦种子为 等种子”,)3,21(iAi表示事件“种子所结的穗有 50 颗以上麦粒”。B则 , ,123()0.9,()0.5,()0.,PPA1()0.5BA2()0.15PBA,根据全概率公式,有:

10、3A 4705.)()()()( 33221 B1.20 解:用 表示色盲, 表示男性,则 表示女性,由已知条件,显然有:BA因此:,025.)(,05.)(,49.0)(,51.)( ABPPA- 7 -根据贝叶斯公式,所求概率为: 1502)()()()()( ABPAPBAPBAP1.21 解:用 表示对试验呈阳性反应, 表示癌症患者,则 表示非癌症患者,显然有:BAA,01.)(,95.0)(,95.0)(,5.0)( BPAP因此根据贝叶斯公式,所求概率为: 2945)()()()()( ABPAPBAPBAP1.22 (1) 求该批产品的合格率 ;(2) 从该 10 箱中任取一箱,

11、 再从这箱中任取一件, 若此件产品为合格品, 问此件产品由甲、乙、丙三厂生产的概率各是多少?解:设, , 321 产 品 为 丙 厂 生 产产 品 为 乙 厂 生 产产 品 为 甲 厂 生 产 BBB,则产 品 为 合 格 品A(1 ) 根据全概率公式, ,该批94.0)()()()( 321 BAPBAPBPA产品的合格率为 0.94.(2 ) 根据贝叶斯公式, 941)()()()( 32111同理可以求得 ,因此,从该 10 箱中任取一箱, 再从这箱中任472)(,927)(3ABP取一件, 若此件产品为合格品, 此件产品由甲、乙、丙三厂生产的概率分别为:。47291- 8 -1.23解

12、:记 =目标被击中 ,则A 94.0)71(8.0)9.1()(1)( AP1.24 解:记 =四次独立试验,事件 A 至少发生一次, =四次独立试验,事件 A 一次也不4 4发生。而 ,因此 。所以5904.)(AP 4096.)()1)(4 PAP2.81,8.0)(三次独立试验中, 事件 A 发生一次的概率为: 。384.06.23)(1)(3 APC二、第一章定义、定理、公式、公理小结及补充:(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当 P(AB)0 时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当 B A 时,P(A-B)=P

13、(A)-P(B)当 A= 时,P( )=1- P(B)(12)条件概率定义 设 A、B 是两个事件,且 P(A)0,则称 为事件 A 发生条件下,)(PB事件 B 发生的条件概率,记为 。)/(A(16)贝叶斯公式,i=1,2,n。nj jjiii BAPAP1)/()/(此公式即为贝叶斯公式。- 9 -第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/362.2 解:根据 ,得 ,即 。1)(0kX10kae1ea故 ea2.3 解:用 X 表示甲在两次投篮中所投中

14、的次数,XB(2,0.7)用 Y 表示乙在两次投篮中所投中的次数, YB(2,0.4)(1) 两人投中的次数相同PX=Y= PX=0,Y=0+ PX=1,Y=1 +PX=2,Y=2=00112222 002 2.73.460.73.406.73.46.3124CCC(2)甲比乙投中的次数多PXY= PX=1,Y=0+ PX=2,Y=0 +PX=2,Y=1=102021022 2 2.73.46.73.46.73.460.5282.4 解:(1)P1X 3= PX=1+ PX=2+ PX=3= 155(2) P0.50(3 )设 FY(y), 分别为随机变量 Y 的分布函数和概率密度函数,则()

15、fy当 时,y020YPXyP当 时, 22 1() xyYFy Xed- 16 -对 求关于 y 的导数,得()YF2 2 2() () (ln)111()0y yYeeefy 02.23 :XU(,)1(0Xfxx其 它(1 )2lny当 时 2()2lnln0YFPXyPyly当 时222 01()2lnlnyeyYFPXyPyXePdx对 求关于 y 的导数,得到 ()Y 221()()0yyYeflnly(2 ),当 y1或 -时 ()cos0YFyPXyP,当 时 arcos1arY ydx对 求关于 y 的导数,得到()YF211(arcos)()0Yfyy1y其 它- 17 -

16、(3 ) 当 y1或 0时 ()sin0YFyPXyP, 0当 时 arcsin0arcsin()0arcsinarcsin11YyyFPXPyPyXdxdx 对 求关于 y 的导数,得到()Y21arcsin(arcsin)() 10Y yfy y 01其 它第三章 随机向量3.1 P1X 2,3Y 5=F(2,5)+F(1,3)-F(1,5)F(2,3)= 31283.2YX1 22 0=2345c3=31245c0- 18 -3.4(1)a= 9(2 ) 5(3 )1 11200 0(,)(6)(6)99|y yPXYDdxdyxd 12320 865)59 37|yy3.5 解:( 1

17、) (2) 22200000(,) (|)|(1)yxyxuvvuvyuxyxFededee(2 ) (2)22000002232300() (|)11)(|)|x xxy vxyxx xxxPYXededyede3.6 解: 2 22 2 201()()(1)axya rPxy ddxy22 22 2001()()(1)|a addrra3.7 参见课本后面 P227 的答案3.8 311120003()(,) 2|X yxfxfydx222000()(,)|yff,()20Xxf其 它 23()Yyf1其 它- 19 -3.9 解: X 的边缘概率密度函数 为:()Xfx当 时, ,10x

18、或 ,0fyf12 22200 1()4.8(2)4.84.81()4.8(2).4().4()|Y yyx xXfxdxyfydyx或当 时,12200().8().().4()|x xXfdyxY 的边缘概率密度函数 为:Yfy 当 时, ,10y或 (,)0fx()Yfy 当 时,1 12 214.824.84.8|Y yyfxdxy22.4(3)y3.10 (1)参见课本后面 P227 的答案(2 ) 26()0xXdyf1其 它 6=0x( -) 1x其 它6()0yYdxf1其 它 60y( -) 1其 它3.11 参见课本后面 P228 的答案3.12 参见课本后面 P228 的

19、答案3.13(1)- 20 -20()()3Xxydfx01其 它 23x01x其 它120()()3Yxydfy02其 它 1=36y02其 它对于 时, ,2y()0Yfy所以 2| 3(,)1()60XYYxyfxyf1其 它 26+0xy1x其 它对于 时,01x()Xfx所以 2| 3(,)()0YXXxyfxyfy2其 它 360xy2其 它111222|000331 7|()2 5406YXyyPYfyddd3.14X Y 0 2 5 X 的边缘分布1 0.15 0.25 0.35 0.753 0.05 0.18 0.02 0.25Y 的边缘分布 0.2 0.43 0.37 1由

20、表格可知 PX=1;Y=2=0.25PX=1PY=2=0.3225- 21 -故 P;P yYxXyYxiiii 所以 X 与 Y 不独立3.15X Y 1 2 3 X 的边缘分布1 69118312 31a b +a+bY 的边缘分布 2a+ 91b+181由独立的条件 则P;P yYxXyYxiiii 22;XY3P3;PY1i可以列出方程 aba)9(3(1)83ba0,解得 91,2ba- 22 -3.16 解(1)在 3.8 中 ()20Xxf其 它 23()0Yyf1其 它当 , 时,02x01y()XYfxy2(,)xfy当 或 时,当 或 时,0()XYf0,fx所以, X 与

21、 Y 之间相互独立。(2)在 3.9 中, 2.4()()0Xxf01x其 它2.4(3)()0Yyfy其 它当 , 时,1xy()XYf2222.4().(34)5.76()34)xyxy=,所以 X 与 Y 之间不相互独立。,fxy3.17 解: xeyxefx ddyxf 02)1(),()( )(2021),()(fyxfyx),(1)(2yxfyxefx故 X 与 Y 相互独立3.18 参见课本后面 P228 的答案- 23 -第四章 数字特征4.1 解: ()1iEXxp0.9iYy甲机床生产的零件次品数多于乙机床生产的零件次品数,又两台机床的总的产量相同乙机床生产的零件的质量较好

22、。4.2 解: X 的所有可能取值为:3 ,4,53510.PC2354.X24350.6P().1.350.64iEXxp4.3 参见课本 230 页参考答案4.4 解: 1(),2,3.nPXp121 1() ()ninpEx 4.6 参考课本 230 页参考答案4.7 解:设途中遇到红灯次数为 X,则 (3,0.4)B()40.312EXnp4.8 解- 24 -xdfXE)()(xd)30(1301521502500+10001500 4.9 参见课本后面 230 页参考答案4.10 参见课本后面 231 页参考答案4.11 解:设均值为 ,方差为 ,则 XN( , )根据题意有 :2

23、2)96(1)96(XP)72)(1t%3.2,解得 t=2 即 =1297.0)(t所以成绩在 60 到 84 的概率为 )127-84X12-60P(84)XP(60-)1(2-0.84364.12 2222().1.01EX- 25 -2222(54)0.(514)0.3(54)0.(534)0.1EX4.13 解: 0000()()2 |xxxxxYEXedeede22330001() |XxxxEdee4.14 解: 34RV设球的直径为 X,则: 1()0fxbaxb其 它333 424()112()()=()66|b baaXEVExdxba4.15 参看课本后面 231 页答案

24、4.16 解:xyfdyxfxx 41302),()( ydfyy 322, 54)()(10xxXE31043 dyydYf 10310310 2122),()( xxyxy dyfXE3)()(05224df 521022 yyfEY- 26 -156)()( 222YXEE4.17 解X 与 Y 相互独立, 1 153500 52()()2()()|y yEXxdexde5552()433|yye4.18,4.19,4.20 参看课本后面 231,232 页答案4.21 设 X 表示 10 颗骰子出现的点数之和, 表示第 颗骰子出现的点数,iX(1,20) i则 ,且 是10ii1210

25、,独立同分布的,又 12()66iEX所以1010()()35iiii4.22 参看课本后面 232 页答案4.23 2222()0.41.301EX222()D2222()0.31.50.31.EY222().9.4EY4.24 4 242224430201111()()63|Xxdxdxx22()3DE- 27 -4.25 1()40Xxydfx1x其 它 =201x其 它112222()(VarEXxdx11323|xx1()40Yydfy其 它 =201y其 它112222()()VarEYydy11323|yy4.26 因为 XN(0,4),YU(0,4)所以有 Var(X)=4 V

26、ar(Y)= 34故:Var(X+Y)=Var(X)+Var(Y)=4+ =3416Var(2X-3Y)=4Var(X)+9Var(Y)= 2894.27 参看课本后面 232 页答案4.28 1212()()()n nXXXEZEEn 12()nn 12() ()()()nXXXDZDDn 22122 2()()()nEEn 后面 4 题不作详解- 28 -第五章 极限理5.3解:用 表示每包大米的重量,则 ,iX()10iEX2()0.1iDX102(,)(10,.)iiNn10 1012 (0,1)0.i i ii i iXXZ Nn1010910(9)( )iiiiPXP 10()()

27、()()102()10.9865.4 解:因为 服从区间0,10上的均匀分布,iV01()52iE210()iD20020111 0(),()(25,)1iiiiVNVN202020111() (0,)53iii iiiEZ NDV202011 510(105)(15)(5)()3ii VPPPVP- 29 -105()(0.387).435.5 解:方法 1:用 表示每个部件的情况,则 ,iX1,0iX正 常 工 作损 坏 (1,0.9)iXB,()0.9iEp()(1).9iDp10,0.,0.1)iiNnN 101010.9(0,1)3()i i ii i iXpXZ Nn101010

28、9850(85)(85)()3iii ii iPXPXP()(.923方法 2:用 X 表示 100 个部件中正常工作的部件数,则(10,.9)B).0Enp()(1)0.91DXnp,(1)9,XNN(0,)3(XZN0(,1)3(1npXZ9085(85)(85)()310.923XPP- 30 -5.6 略第六章样本与统计6.16.3.1 证明 :由 = +b 可得,对等式两边求和再除以 n 有nbanniiniiXY11)(由于 niiY1niiX1所以由 可得= =Ynbanii1Xa6.3.2 因为 Yniinii 2112)( bXainini 212)()2(2 221 XabXabnini niiini 122212niiai1222 )(

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报