ImageVerifierCode 换一换
格式:PDF , 页数:69 ,大小:11.52MB ,
资源ID:5626312      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5626312.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(应用多元统计分析 朱建平 课后答案.pdf)为本站会员(weiwoduzun)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

应用多元统计分析 朱建平 课后答案.pdf

1、2.1. 12 (,) p X XXX p 12 (,) p X XXX p 2.2 12 () XX 12 () XX 12 2 112 2 212 1/2 1 2 22 112112 22 212212 11 ()exp()() 2 2 fxxx 2.3 12 () XX 1212 12 22 2()()()()2()() (,) ()() dcxabaxcxaxc fxx badc 1 axb 2 cxd 1 1 X 2 X 2 1 X 2 X 3 1 X 2 X 1 1 X 2 X 22 22 112112 112112 11 11 22 22 22 112112 112112 22

2、11 11 22 11 112112 112112 112112 11 22 112112 112112 112112 112112 112112 112112 112112 112112 22 22 22 ()exp()() 22 22 22 22 22 ()exp()() ()exp()() 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 ()exp()() ()exp()() ()exp

3、()() 22 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 112112 22 22 212212 212212 22 22 2 2 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 212

4、212 22 22 22 212212 212212 2 2 212212 212212 212212 212212 ()exp()() ()exp()() 22 22 ()exp()() 22 ()exp()() ()exp()() ()exp()() 112112 112112 112112 ()exp()() 112112 ()exp()() ()exp()() ()exp()() ()exp()() ()exp()() ()exp()() 22 ()exp()() 112112 ()exp()() ()exp()() 112112 ()exp()() 212 212 1 1 ()exp

5、()() 22 112112 112112 ()exp()() ()exp()() ()exp()() 22 22 ()exp()() 112112 112112 ()exp()() 112112 112112 112112 ()exp()() ()exp()() 22 22 22 22 ()exp()() 22 22 212212 212212 212212 212212 212212 121 121 2()()()()2()() 121 121 121 dcxabaxcxaxc dcxabaxcxaxc 2()()()()2()() 2()()()()2()() 2()()()()2()(

6、) 121 121 121 121 2()()()()2()() 2()()()()2()() 2()()()()2()() 2()()()()2()() 121 121 121 121 cxd cxd1 1212 1 22 2()()()()2()() () ()() d x c dcxabaxcxaxc fxdx badc 12 212 2 22 22 2()()2()()2()() ()()()() d d c c dcxaxbaxcxaxc dx badcbadc 12 1 22 22 0 2()()2()2() ()()()() d dc c dcxaxbatxat dt badcb

7、adc 22 121 2222 0 2()()()2()1 ()()()() dc d c dcxaxbatxat badcbadcba 1 X 2 ba 2 12 ba 2 X 2 1 2 1 , () 0 x xcd fx dc 2 dc 2 12 dc 2 1 X 2 X 12 cov(,) xx 1212 12 12 22 2()()()()2()() 22()() db ca dcxabaxcxaxc abdc xxdxdx badc ()() 36 cdba 12 12 cov(,)1 3 xx xx 3 1 X 2 X 1 X 2 X 12 1212 (,)()() xx fxx

8、fxfx 2.4 12 (,) p XXXX 2 2 () () 2 2 0 0 () () 22()() 22()() 1 2()()()()2()() xd 2()()()()2()() abdc abdc xd xd abdc abdc abdc abdc abdc abdc abdc xd xd xd 12 xd xd abdc abdc abdc abdc xd 22()() 22()() 12 22()() 22()() 12 xd xd 1212 (,) p X XXX 1/2 1 1 11 (,.,)exp()() 2 2 p p fxx x x 2 1 2 2 2 p 222

9、 12 p 2 1 2 1 2 2 1 1 1 p 1 (,.,) p f xx 2 1 1/2 2 2221 2 12 2 1 1 11 exp()() 2 2 1 p p p x x 2 2 2 1 23 11 12 222 12 () () () 11 11 exp . 222 2 p pp p p x x x 2 1 2 1 () 1 exp().() 2 2 p ii p i i i x fxfx 2.5 12p p 12 2221 2221 2221 11 11 1/2 1/2 2221 2221 2221 1/2 1/2 exp()() 2221 2221 11 exp()()1

10、 n i i n XX 1 ()() n ii i n XXXX 35650.00 12.33 17325.00 152.50 X 201588000.0038900.0083722500.00-736800.00 38900.0013.06716710.00-35.80 83722500.0016710.0036573750.00-199875.00 -736800.00-35.800-199875.0016695.10 1 1 pn n 1 XX ,S 1 () nnn n 11 XIX 10 01 n I SPSS 1. Analyze DescriptiveStatistics Des

11、criptives Descriptives Variables 2.1 2.1 Descriptives 2. Options Options Mean 2.2 Continue 1 () () 1 nnn nnn () () n n () () () () () () 1 () () () () DescriptiveStatistics DescriptiveStatistics Variables Variables 10 10 n n I I n DescriptiveStatistics Descriptives Descriptives Variables Variables2.

12、2Options 3. OK 2.1 35.3333 12.3333 17.1667 1.5250E2 2.1 SPSS 1. Analyze Correlate Bivariate BivariateCorrelations Variables 2.3 2.3BivariateCorrelations 2. Options Options Cross-productdeviationsandcovariances 2.4 Continue Analyze2.4Options 3. OK 2.2 Covariance Pearson Correlation SumofSquaresandCro

13、ss-products 2.6 2.7 (,) p N X 12 ,., n XXX X X 111 () nnn ii iii EEnEnn XXX 22 111 11 () nnn ii iii DDnD nnn XXX (,) p N X2.8 1 1 1 ()() 1 n ii i n XXXX 1 1 1 n ii i n n XXXX 1 1 ()() 1 n ii i EEn n XXXX 1 1 1 n ii i EnE n XXXX 1 11 (1) 11 n i nn nnn 2 1 () n ii i SX-X)(X-X 1 ( n ii i X- X )X- X ) 1

14、1 ()()2()()() nn iii ii n X- X- X- X- X )(X X 1 ()()2()() n ii i nn X- X- X )(X X )(X 1 ()()() n ii i n X- X- X )(X 1 1 ()()()() 11 n ii i EEn nn S X- X- X )(X 1 1 ()()() 1 n ii i EnE n X- X- X )(X 1 n S 2.9. (1)(2)() n X,X,.,X (,) p N X S ( ( ( ( ( ( ( ( ( ( ( 11 11 ()()2()()() nn nn iii iii ()()2(

15、)()() ()()2()()() ()()2()()() ii ii 11 11 11 11 11 11 11 11 ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() iii iii iii ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()()

16、()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()()

17、()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()()

18、()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()()

19、()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()2()() ()()() ()()() ii ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()() ()()()() ()()()() n n ()()()() ()()()() ()

20、()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()() ()()()()* * () * 111 ij nnn I 12n12n =( )=XXX (1,2,3,4,) , in i X 12 () n 1 1 n ni i n 1 1 ()()

21、 n ni i EEn n () Var n Z 1 ()()(1,2,3,1) n aajj j EEran 1 1 n aj j n n r 1 0 n ajnj i nrr 1 ()() n aajj j VarVarr 22 11 nn aj j aj jj rVarr 121 n (0,) N 1 ()() n jj i SXXXX 1 n jj j n XXXX 11 11 nn iinn ii nnnn nn XX X XZZ 11 aj jj rVarr aj 11 22 aj rVarr aj rVarr 121 121 121 121 121n n n j j j X X

22、X X X X X X 2 1 2 1 1 1 2 12n n X X XXX X 1 2 12n n Z Z ZZZ Z n n n j j j n n n j j j Z ZZ Z Z Z X X 1 1 1122 . nn nn ZZZZZZ- 1 1 n jj j S 121 , n ZZZ (0,) p N 1 1 (1,) n jjp j Wn S 2.10. () ii Xnp (,) pii N 1,2,3, ik 1 2 . k 1 2 . k 1 2 2 . k 1 2 ,., k 1 1 11 12 1 . a n k a i ai k nnn xx 11 12 . a

23、n k aa ii ai k nnn xxxx (2) 1 ln(,) k L 2 11 1 ln()exp 2 a n k n paa iaia ai 2 -1 (x- ) (x- ) 121 121 121 n 121 121 121 ZZ ZZ 121 121 121 121 121 121 121 ZZ . . (0,) (0,) p N N p p (,) pii (,) (,) (,) k k k k . . .11 11 ln()ln()ln 222 a n k aa iaia ai n Lpn2 -1 , (x- ) (x- ) 2 11 11 ln(,)1 ()()0 22

24、a n k aa iaia ai Ln XX 1 1 ln(,) ()0(1,2,.,) j n j ijj i j L j k X 1 1 j n jjij i j n xx 11 12 . j n k jj ji k nnn ij ij xxxx 2 0 () X zn /2 | zz 2 0 () X tn S /2 |(1) ttn 22 1 1 () 1 n i i SXX n 2 00 H 212 000 ()()() Tnp X X 22 0 T 2 (1)1 (,) (1) np TFpnp np 2 (1) np TF np ()21 00 (1)()() Tnnn X SX

25、 012 H 212 0 ()()() nm Tp nm XY XY 22 0 T 2 (2)1 (,1) (2) nmp FTFpnmp nmp FF 21 (2)()() nm nm Tnm nm nm XYSXY m n -1 () (,) npn FFpnp p ZSZ FF m n 1 () (,) npn FFpn p p - ZSZ FF k H 2 1 0 (1) (1,) () SSAk F Fknk SSEnk FF (,1) pnkk EE TAE 0 0 p H I /2 /2 1 exp 2 np n e tr n SS 00p HI /2 /2 * 1 exp 2

26、np n e tr n SS 12 k012 k H /2/2 /2 /2 11 i i kk nn pn np kii ii nn SS 2 221 2 () ()()() nX tnXSX S (,) p N X (,) p Wn S XS (1,) (1,) (1,) (1,) (1,) (1,) (1,) (1,) (1,) (1,) (1,) (1,) EE EE EE TAE TAE TAE TAE 1 exp exp exp 00 p p (,1) (,1) (,1) (,1) (,1) (,1) (,1) (,1) 00 I Ip n T 2 (,) p N X0 (,) p

27、Wn S X S 21 Tn XSX 2 1 (,1) np TFpnp np 2 2 T F F F p 1 n 2 n F 1 11 1 1 11(,1) (,1) (,1) nppn Fpnp ppn 2 1 1 1 1 1(,2) (2,2() (,2) pn np Fpnp p pn 1 11 2 21 212 1(1,) (,) (1,) nnn Fnn nnn 2 12 1 21 2 12 1(2,) 1 (2,2(1) (2,) nn n Fnn n nn 012 k H 1 ij Hij (,1) pnkk EE TAE Wilks 1 11 11 212 1(1,) 1(1

28、,) 11 nnn nnn 11 11 1(1,) 11 nnn nnn 212 212 1(1,) 1(1,) n 2 11 2 2 212 212 1(1,) 1(1,) 11 2 2 (,) (,) (1,) (1,) 212 212 1(1,) 1(1,) 1(1,) 11 (,) nnn 212 (1,) (1,) (1,) 212 212 212 212 (2,2() (2,2() (2,2() (2,2() (2,2() (2,2() (2,2() (2,2() (2,2() (2,2() (2,2() (2,2() 1(2,) 1(2,) 1(2,) (2,) (2,) 1(2

29、,) 1(2,) 1(2,) 1(2,) 1(2,)22 12 (,)(,) DGDG XX11 1122 111111 111 222 111 211122 ()()()() 2(2) 2() XXXX X XX XXX X 11 211212 1 12 12 2()()() 2() 2 2()2() X X X X ()() W XX k k G G G, , , 2 1 k , , , 2 1 k , , , 2 1 k 2 1 21 (,)()() DG XXX 111 1 2 2() C X XX X XIX I 1 1 2 1 C k , , 2 , 1 () WC XIX k ,

30、 , 2 , 1 i G X 1 ()max() i k WC XIX k G G G , , , 2 1 ) ( , ), ( ), ( 2 1 x x x k f f f k q q q , , , 2 1 0 i q 1 1 k i i q i G j G ) | ( i j C k j i , , 2 , 1 , k k G G G , , , 2 1 p ) , , , ( 2 1 k R R R R R i G j G x x d f R i j P j R i ) ( ) , | ( j i k j i , , 2 , 1 , k j R i j P i j C R i r 1

31、) , | ( ) | ( ) | ( k i , , 2 , 1 21 (,)()() (,)()() 21 21 (,)()() (,)()() 21 (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() 21 (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() (,)()() 111 111 2() 2() 2() 2() 2() 2() 111 111 111 111 111

32、 111 111 111 111 111 111 111 111 111 X X 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 k k1 1 , 2 , 1 , 2 , 1 k , , 2 , 1 2 , 1 i G i ()max() i WC WC ()max() i ()max()R k i i R i r q R g 1 ) , ( ) ( k i k j i R i j P i j C q 11 ) , | ( ) | ( k R R R , , , 2 1 ) ( R

33、g k i k j i R i j P i j C q R g 11 ) , | ( ) | ( ) ( x x d f i j C q k i k j R i i j 11 ) ( ) | ( k j R k i i i j d f i j C q 11 ) ( ) | ( ( x x 1 (|)()() k iij i qCjifh xx k j R j j d h R g 1 ) ( ) ( x x ) , , , ( * * 2 * 1 * k R R R R k j R j j d h R g 1 * * ) ( ) ( x x k i k j R R j i j i d h h R

34、 g R g 11 * * ) ( ) ( ) ( ) ( x x x i R ) ( ) ( x x j i h h j ) , , , ( 2 1 k R R R R 1 |()min() iij jk Rhh xxx k i, , 2 , 1 k p 1122 () pp UuXuXuX XuX ) , , , ( 2 1 p u u u u p () UX j j 1 j j d ) ( ) ( j j h j x d h h j j j j ) , ) k , Rhh Rhh pp UuXuXuX UuXuXuX pp iij iij |()min() |()min() |()min

35、() Rhh |()min() |()min() iij |()min() |()min() |()min() |()min() |()min() |()min() |()min() |()min() |()min() |()min() |()min() |()min() p UuXuXuX UuXuXuX pp UuXuXuX UuXuXuX UuXuXuX UuXuXuX UuXuXuX2 1 q q ) 1 | 2 ( ) 2 | 1 ( C C 1 d 0 ln d 4.812.258 22.567 33.039 43.286 52.876 63.587 74.898 81.734 9

36、2.242 102.743 3.0 8 5 group group1 2 3 X1 X2 X3 spss 1. SPSS Analyze Classify Discriminate group X1 X2 X3 Enterindependentstogether 2. DefineRange 1 3 1 3 Continue 4.1 4.1 3. Statistics Function Coefficients Fishers Bayes Fisher Fishers Fisher 4.2 Continue 4.2statistics 1 X X2 2 3 Continue4. Classif

37、y classification Display Summarytable 4.3 4.3classification 5. OK 1) Bayes Bayes 4.1 Bayes Group1 3 761 . 16 2 297 . 12 1 689 . 11 843 . 81 1 X X X Y Group2 3 086 . 17 2 361 . 13 1 707 . 10 536 . 94 2 X X X Y Group3 3 447 . 6 2 960 . 4 1 194 . 2 449 . 17 3 X X X Y Bayes ClassificationFunctionCoeffic

38、ients group 1 2 3 x1 -11.689 -10.707 -2.194 x2 12.297 13.361 4.960 x3 16.761 17.086 6.447 (Constant) -81.843 -94.536 -17.449 Fisherslineardiscriminantfunctions 4.1 Bayes 4.2 4 3 1 75% 3 2 1 66.7% 3 80.0% ClassificationResults a group PredictedGroupMembership Total 1 2 3 Original Count 1 3 1 0 4 2 1

39、2 0 3 group 2 60 2 0 ClassificationFunctionCoefficients 16.761 -81.843 Fisherslineardiscriminantfunctions -10.707 13.361 3 4.13 0 0 3 3 % 1 75.0 25.0 .0 100.0 2 33.3 66.7 .0 100.0 3 .0 .0 100.0 100.0 a.80.0%oforiginalgroupedcasescorrectlyclassified. 4.2 2) 0 . 3 1 X 8 2 X 5 3 X 3 Bayes 2 Y classific

40、ation casewiseresults 4.9 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X Bayes Fisher 53 1 9 18 50 11.20 2.02 3.58 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 123172316.600.341.71 2341173598.001.812.91 3422723414.600.94.94 43911954813.101.934.36 535191345.000.401.30 6371132415.101.801.82 7291131427.401.461.65 83221167523.307.

41、769.72 928223236.400.191.29 10261432710.502.47.36 group0 group1 53 1 9 18 50 11.20 2.02 3.58 11 group spss 1. SPSS Analyze Classify Discriminate group 6 1 X X Enterindependentstogether 2. DefineRange 0 1 0 1 Continue X Bayes Bayes 53 1 1 9 9 18 18 6371132415.101.801.82 123172316.600.341.71 123172316

42、.600.341.71 2341173598.001.812.91 2341173598.001.812.91 3422723414.600.94.94 3422723414.600.94.94 43911954813.101.934.36 43911954813.101.934.36 535191345.000.401.30 535191345.000.401.30 4 4 X X 4 4 X X 6 6 X X 6 6 Fisher Fisher 50 11.20 11.20 2.023. Statistics Function Coefficients Fishers Unstandar

43、dized Continue 4. Classify Display Casewiseresults Continue 5. OK 1) 4.3 4.3 Fisher 8 383 . 2 7 792 . 0 6 710 . 0 5 024 . 0 4 357 . 0 3 173 . 0 2 687 . 6 1 32 . 0 794 . 10 X X X X X X X X Y Y group0 group0 4.4 4.4 bayes bayes 4.5 group Bayes Bayes 8 504 . 37 7 994 . 10 6 723 . 13 5 969 . 2 4 943 . 4

44、 3 033 . 1 2 070 . 94 1 340 . 0 693 . 118 0 X X X X X X X X G 8 116 . 49 7 133 . 7 6 182 . 17 5 086 . 3 4 681 . 6 3 874 . 1 2 660 . 126 1 184 . 0 296 . 171 1 X X X X X X X X G 3 173 . 0 2 3 173 . 2 3 3 02 . 0 4 357 0 . 0 4 group04.5Bayes Bayes 2) CasewiseStastics group0 4.10 1 X 2 X 3 X 4 X 1 X 2 X

45、3 X 4 X 12281342011 22451341040 32001671227 417015078 51001672014 6225125714 7130100612 815011776 91201331026 10160100510 11185115519 1217012564 1316514253 14135108212 1510011772 group1 group2 group3 bayes spss 1. SPSS Analyze Classify Discriminate 12281342011 12281342011 22451341040 22451341040 1 1

46、 X X 1 1 12281342011 12281342011 6225125714 6225125714 7130100612 7130100612 815011776 815011776 51001672014 91201331026 6225125714 6225125714 7130100612 7130100612 12281342011 12281342011 22451341040 22451341040 32001671227 32001671227 417015078 417015078 51001672014 51001672014 2 2 X 2group X1 X2

47、X3 X4 Enter independentstogether 2. DefineRange 1 3 1 3 Continue 3. Statistics FunctionCoefficients Fishers Bayes 4. Classify classification Display Summarytable 5. OK Bayes Bayes 4.6 Bayes Group1 4 073 . 0 3 778 . 0 2 753 . 0 1 164 . 0 212 . 79 1 X X X X Y Group2 4 012 . 0 3 317 . 0 2 595 . 0 1 130

48、 . 0 721 . 46 2 X X X X Y Group3 4 059 . 0 3 100 . 0 2 637 . 0 1 130 . 0 598 . 49 3 X X X X Y Bayes 4.6Bayes 4.7 5 4 1 80% 5 4 1 80% 5 4 1 80.0% 4.7 45.1 n p k 5.2 5.3 n p n 1/ 1 ()( ) p q q ijikjk k dqXX q 1 1 q 1 (1) p ijikjk k dXX 2 2 q 2 1/2 1 (2)( ) p ij ikjk k dXX 3 q 1 ()max ij ikjk kp dXX 21

49、 ()()() ijijij dM XX XX 1 1 () p ikjk ij k ikjk XX dL pXX 1 1 q ijikjk ijikjk k k dqXX dqXX ijikjk ijikjk ijikjk ijikjk dqXX dqXX dqXX ijikjk ijikjk ijikjk ijikjk ijikjk ijikjk ijikjk ijikjk ijikjk dqXX ijikjk 1/ ) q 2 2 1/2 ) ikjk ikjk dXX dXX ikjk ikjk ikjk dXX dXX dXX ikjk ikjkp 5.4 dij Xi Xj Dij Gi Gj 1 . , min ikjr kr ij XGXG D d min, k

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报