ImageVerifierCode 换一换
格式:PPT , 页数:13 ,大小:341KB ,
资源ID:5462822      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5462822.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(非线性规划和动态规划.ppt)为本站会员(j35w19)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

非线性规划和动态规划.ppt

1、非线性规划问题,线性规划和整数规划它们的目标函数和约束条件都是自变量的线性函数,在实际中还有大量的问题,其目标函数或约束条件很难用线性函数来表示。如果目标函数或约束条件中含有非线性函数,则称这种规划问题为非线性规划问题。,二次规划模型,问题1 容器设计问题 某公司生产贮藏用容器,订货合同要求该公司制造一种敞口的长方体容器,容积为12立方米,该容器的底为正方形,容器总重量不超过68公斤。已知用作容器四壁的材料为每平方米10元,重3公斤;用作容器底的材料每平方米20元,重2公斤。试问制造该容器所需的最小费用是多少?,模型建立 设该容器的底边长和高分别为,则问题的数学模型为,在LINGO中求解: m

2、in=40*x1*x2+20*x12; x12*x2=12; 12*x1*x2+2*x12=68; 得到x1=2.690416,x2=1.657839,min f=323.1778,用lingo求解: max=30*x1+450*x2; 0.5*x1+2*x2+0.25*x22=800; gin(x1); gin(x2); 得到x1=1495,x2=11,max f=49800,线性规划:lindo/lingo 非线性规划:lingo 二次规划:lingo 整数规划:lindo/lingo 0-1整数规划:lindo/lingo,第四节 动态规划 (Dynamic Programming),动

3、态规划是1951年由美国数学家贝尔曼(Richard Bellman)提出,它是解决一类多阶段决策问题的优化方法,也是考察问题的一种途径,而不是一种算法(如LP单纯形法)。因此它不象LP那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。动态规划方法是现代企业管理中的一种重要决策方法。如果一个问题可将其过程划分为若干个相互联系的阶段问题,且它的每一阶段都需进行决策,则这类问题均可用动态规划方法进行求解。根据多阶段决策过程的时序和决策过程的演变,动态规划方法有以下四种类型:离散确定型、离散随机型、连续确定型和连续随机型。,一 动态规划的基本概念和最优化原理,1、引例

4、(最短路问题),假如上图是一个线路网络,两点之间连线上的数字表示两点间的距离(或费用),我们的问题是要将货物从A地运往E地,中间通过B、C、D三个区域,在区域内有多条路径可走,现求一条由A到E的线路,使总距离最短(或总费用最小)。,将该问题划分为4个阶段的决策问题,即第一阶段为从A到Bj(j=1,2,3),有三种决策方案可供选择;第二阶段为从Bj到Cj(j=1,2,3),也有三种方案可供选择;第三阶段为从Cj到Dj(j=1,2),有两种方案可供选择;第四阶段为从Dj到E,只有一种方案选择。如果用完全枚举法,则可供选择的路线有3321=18(条),将其一一比较才可找出最短路线: AB1C2D3E

5、其长度为12。显然,这种方法是不经济的,特别是当阶段数很多,各阶段可供的选择也很多时,这种解法甚至在计算机上完成也是不现实的。由于我们考虑的是从全局上解决求A到E的最短路问题,而不是就某一阶段解决最短路线,因此可考虑从最后一阶段开始计算,由后向前逐步推至A点:,第四阶段,由D1到E只有一条路线,其长度f4(D1)=3, 同理f4(D2)=4。 第三阶段,由Cj到Di分别均有两种选择,即,,决策点为D1,决策点为D1,,决策点为D2,第二阶段,由Bj到Cj分别均有三种选择,即:,决策点为C2,决策点为C1或C2,决策点为C2,第一阶段,由A到B,有三种选择,即:,决策点为B3,f1(A)=12说明从A到E的最短距离为12,最短路线的确定可按计算顺序反推而得。即 AB3C2D2E,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报