ImageVerifierCode 换一换
格式:PPT , 页数:118 ,大小:1.26MB ,
资源ID:5434330      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5434330.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(4 信号与系统 周建华 光电学院教学课件.ppt)为本站会员(czsj190)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

4 信号与系统 周建华 光电学院教学课件.ppt

1、most periodic signals have the Fourier series representations:,How can do the aperodic signals?,4 The continuous time Fourier transform,4 The continuous time Fourier transform,Emphases in this chapter: The Fourier transform of the continuous-time aperiodic signal.The Fourier transform of the continu

2、ous-time periodic signal. The properties of Fourier transform. Basic Fourier transform pairs.Fourier inverse transform.analyze LTI systems in frequency domain.,4.1 The continuous time Fourier transform,4.1 Representation of Aperiodic signals:The Continuous-time Fourier Transform,4.1.1 Development of

3、 the Fourier transform representation of the continuous-time Fourier transform,(1) Example,( From Fourier series to Fourier transform ),4.1 The continuous time Fourier transform,(2) Fourier transform representation of Aperiodic signal,For aperiodic signal x(t) :,For periodic signal :,4.1 The continu

4、ous time Fourier transform,T,4.1 The continuous time Fourier transform,When T ,So,4.1 The continuous time Fourier transform,4.1 The continuous time Fourier transform,The Fourier transform equation of continuous-time aperiodic signal x(t):,The inverse Fourier transform equation of continuous-time ape

5、riodic signal:,The spectral of x(t).,4.1 The continuous time Fourier transform,The Fourier transform pair:,4.1 The continuous time Fourier transform,Relation between Fourier series ak and Fourier transform X(j) :,4.1 The continuous time Fourier transform,4.1 The continuous time Fourier transform,4.1

6、 The continuous time Fourier transform,According to the Fourier transform pairs, we can obtain special formula:,Applications:,4.1 The continuous time Fourier transform,Example: The spectrum X(j) of the signal x(t) is depicted in figure:,-2 -1 0 1 2,1,X(j),(1) Find,(2) Find,4.1 The continuous time Fo

7、urier transform,Solution:,(1),(2),Odd function,4.1.2 Convergence of Fourier transform,Dirichlet conditions:(1) x(t) is absolutely integrable.(2) x(t) have a finite number of maxima and minima within any finite interval.(3) x(t) have a finite number of discontinuity within any finite interval. Furthe

8、rmore, each of these discontinuities must be finite.,4.1 The continuous time Fourier transform,4.1.3 Examples of Continuous time Fourier Transform,Example 4.1 4.2 Compute the Fourier transform of the following signals.,(a),(b),4.1 The continuous time Fourier transform,Example 4.3,4.1 The continuous

9、time Fourier transform,Example 4.4,4.1 The continuous time Fourier transform,Example 4.5 Compute the inverse Fourier series of the following signal.,4.1 The continuous time Fourier transform,the sinc function :,The properties of sinc function: 1) sinc() is a even function; 2) When is integer, sinc()

10、=0,and,Figure 4.10,4.1 The continuous time Fourier transform,3) The total area of sinc() is 1.,4.1 The continuous time Fourier transform,The other form of the function is called sample function Sa(x):,The total area of Sa(x) is .,Compare example 4.4 with example 4.5.,The duality property of Fourier

11、transform,4.1 The continuous time Fourier transform,4.1 The continuous time Fourier transform,Example :,4.1 The continuous time Fourier transform,(a),(b),4.1 The continuous time Fourier transform,Solution:,(a),(b),4.1 The continuous time Fourier transform,Note :1)绝对可积条件,仅是付利叶变换存在的充分条件,而不是必要条件。2)在允许付

12、利叶变换采用冲激函数的前提下,使许多不满足绝对可积条件的信号存在付利叶变换,这样就可以把周期信号和非周期信号的分析方法统一起来,使付利叶变换获得更加广泛的应用。3)不满足绝对可积条件的付利叶变换一般都存在冲激函数。,4.2 The Fourier Transform for Periodic Signal,Periodic signal:,thus,4.2 The Fourier Transform for Periodic Signal,Example 4.6 4.7 4.8,(a) the periodic square wave signal,(b),(c),4.2 The Fourie

13、r Transform for Periodic Signal,Note: The Fourier series coefficient ak of periodic signal figure is bar lineThe Fourier transform X(j) of periodic signal figure is impulse train.,Compare figure 4.2 with figure 4.12,4.2 The Fourier Transform for Periodic Signal,注意:当要求一个信号的傅利叶变换时,首先要分清该 信号是周期信号还是非周期信

14、号。,非周期信号的傅利叶变换对:,周期信号的傅利叶变换对:,例如,习题4.21(g) (h),4.2 The Fourier Transform for Periodic Signal,4.3 Properties of the Continuous time Fourier Transform,then,If,4.3.1 Linearity,4.3 Properties of the Continuous time Fourier Transform,then,If,4.3.2 Time Shifting,4.3 Properties of the Continuous time Fouri

15、er Transform,时域里时移,对应频域里相移。,4.3 Properties of the Continuous time Fourier Transform,Example 4.9 Use the time shifting property to compute the Fourier transform of x(t).,4.3 Properties of the Continuous time Fourier Transform,4.3.3 Conjugation and Conjugate Symmetry,then,(1) If,4.3 Properties of the

16、Continuous time Fourier Transform,then,(2) If x(t) is real signal,4.3 Properties of the Continuous time Fourier Transform,(3) If,then,4.3 Properties of the Continuous time Fourier Transform,4.3.4 Differentiation and Integration,then,(1) If,4.3 Properties of the Continuous time Fourier Transform,补充:,

17、4.3 Properties of the Continuous time Fourier Transform,then,(2) If,4.3 Properties of the Continuous time Fourier Transform,Example 4.11 Determine the Fourier transform of x(t)=u(t).,4.3 Properties of the Continuous time Fourier Transform,Solution:,Example 4.12 Calculate the Fourier transform of x(t

18、) as figure:,4.3 Properties of the Continuous time Fourier Transform,Solution:,4.3 Properties of the Continuous time Fourier Transform,Example:,Calculate the Fourier transform of triangular function q(t):,t,-/2,q(t),1,4.3 Properties of the Continuous time Fourier Transform,Solution:,/2,Solution:,4.3

19、 Properties of the Continuous time Fourier Transform,4.3.5 Time and Frequency Scaling,then,If,A signal is stretched |a| times in time, corresponding to compressed |a| times in frequcy. A signal is compressed |a| times in time, corresponding to stretched |a| times in frequcy.,4.3 Properties of the Co

20、ntinuous time Fourier Transform,时域扩展,对应频域压缩,4.3 Properties of the Continuous time Fourier Transform,Especially,reversal in time domain reversal in frequency domain.,补充,4.3 Properties of the Continuous time Fourier Transform,Example:,4.3 Properties of the Continuous time Fourier Transform,4.3.6 Duali

21、ty(对称性),then,If,(即:与原信号x(t) 的频谱函数X(j)具有相同形式 的信号X(jt)的傅立叶变换为2x(-).),If x(t) is even signal,补充,4.3 Properties of the Continuous time Fourier Transform,4.3 Properties of the Continuous time Fourier Transform,4.3 Properties of the Continuous time Fourier Transform,Example 4.13,4.3 Properties of the Cont

22、inuous time Fourier Transform,Example :,4.3 Properties of the Continuous time Fourier Transform,(符号函数),Example:,补充,4.3 Properties of the Continuous time Fourier Transform,Defining:,Prove: We look Sgn(t) as the following signal,4.3 Properties of the Continuous time Fourier Transform,1. The frequency

23、shifting property:,if,4.3 Properties of the Continuous time Fourier Transform,x(t) 在时域里乘以ej0t,对应于频谱X(j) 在频域里产生频移(右移0)。,Prove:,4.3 Properties of the Continuous time Fourier Transform,Example:,4.3 Properties of the Continuous time Fourier Transform,2. Differentiation property in frequency :,if,4.3 Pro

24、perties of the Continuous time Fourier Transform,Prove:,4.3 Properties of the Continuous time Fourier Transform,3. Integration property in frequency :,if,4.3 Properties of the Continuous time Fourier Transform,Example:,补充,4.3 Properties of the Continuous time Fourier Transform,注:求傅立叶反变换时,需要这些公式。,4.3

25、 Properties of the Continuous time Fourier Transform,Example:,4.3.7 Parsevals Relation,then,If,4.3 Properties of the Continuous time Fourier Transform,: The energy-density spectrum of x(t).,4.3 Properties of the Continuous time Fourier Transform,Example 4.14 The Fourier transform X(j) of x(t) isdepi

26、cted as following figure,to find,4.3 Properties of the Continuous time Fourier Transform,(a),(b),4.3 Properties of the Continuous time Fourier Transform,Solution:,(a),4.3 Properties of the Continuous time Fourier Transform,(b),4.4 The Convolution Property,Consider a LTI system:,4.3 Properties of the

27、 Continuous time Fourier Transform,时域里卷积,对应频域里相乘。,4.3 Properties of the Continuous time Fourier Transform,Example 4.15 Use the Fourier transform to compute y(t).,4.4.1 Examples,4.3 Properties of the Continuous time Fourier Transform,Example 4.16For a differentiator,4.3 Properties of the Continuous t

28、ime Fourier Transform,Example 4.17For a integrator,4.3 Properties of the Continuous time Fourier Transform,Example 4.19,4.3 Properties of the Continuous time Fourier Transform,4.5 The Multiplication ( modulation ) Property,The multiplication(modulation) property:,4.3 Properties of the Continuous tim

29、e Fourier Transform,时域里相乘,对应频域卷积(再除以2)。,Example 4.21,We have known,and S(j) of signal s(t) as the following figure:,-1 1 ,A,S(j),4.3 Properties of the Continuous time Fourier Transform,4.3 Properties of the Continuous time Fourier Transform,The multiplication property is called the modulation proper

30、ty. In example 4.21, and s(t) is the modulated signal,p(t) is carrier wave signal.,4.3 Properties of the Continuous time Fourier Transform,4.3 Properties of the Continuous time Fourier Transform,Example 4.22 The demodulation process of example 4.21.,The frequency response of low pass filter H(j) is:

31、,4.3 Properties of the Continuous time Fourier Transform,filter,Conclusion:,4.3 Properties of the Continuous time Fourier Transform,Example 4.23,4.3 Properties of the Continuous time Fourier Transform,4.6 Tables of Fourier Properties and of Basic Fourier Transform Pairs,4.3 Properties of the Continu

32、ous time Fourier Transform,Table 4.1,补充,4.3 Properties of the Continuous time Fourier Transform,时域微分:,对偶性:,频域微分:,频域积分:,4.3 Properties of the Continuous time Fourier Transform,Modulation property:,Table 4.2,补充,(1),(2),(3),(4),4 The continuous time Fourier transform,以下补充练习: 请同学们自己做,Compute the Fourier

33、 transform of the following signals.,(1),(2),(3),4 The continuous time Fourier transform,(4),4 The continuous time Fourier transform,(5),(6),4 The continuous time Fourier transform,2. Compute the inverse Fourier transform of the following signals,(1),(2),4 The continuous time Fourier transform,3. We

34、 have known,and,Question:,4 The continuous time Fourier transform,4. We have known,Question:,4.7 System Characterized by Linear Constant-Coefficient Differential Equation,Constant-coefficient differential equation:,Fourier transform:,4.7 Analyze LTI system in frequency domain,Input x(t),then,1) The

35、unit impulse response of the system,2) The output y(t) of the system with rest initial condition.,Frequency response,4.7 Analyze LTI system in frequency domain,Example 4.24,4.7 Analyze LTI system in frequency domain,Example 4.26,4.7 Analyze LTI system in frequency domain,补充:求傅立叶反变换方法,求傅立叶反变换有三种方法: 方

36、法一:用傅立叶反变换公式求解,方法二:利用傅立叶变换性质和常用函数傅立叶变换对方法三:利用部分分式展开的方法求,方法一:利用傅立叶反变换公式求,例题:求傅立叶反变换,解:,补充:求傅立叶反变换方法,方法二: 利用傅立叶变换性质和常用函数傅立叶变换对表求,参见表4.1和表4.2,Example:,Solution:,补充:求傅立叶反变换方法,If X(j) is the Fourier transform of the signal x(t),把上式的分母按j因式分解后,再把 X(j)写成部分分式和的形式,分以下几种情况讨论。,方法三:利用部分分式展开法求傅立叶反变换,补充:求傅立叶反变换方法,

37、情况1:p1,p2pN为X(j)分母的不同实根时,X(j)可写成如下形式:,补充:求傅立叶反变换方法,式中,,补充:求傅立叶反变换方法,Example 1,补充:求傅立叶反变换方法,Solution:,补充:求傅立叶反变换方法,情况2:X(j)分母的有共轭复根p1=p2*时,把共 轭复根看作两个不同根处理,方法同情况1。,补充:求傅立叶反变换方法,suppose,then,对共轭根部分有:,Example 2,补充:求傅立叶反变换方法,Solution:,补充:求傅立叶反变换方法,补充:求傅立叶反变换方法,情况3:X(j)的分母有r重实根p1,而其它根为不同实根时,X(j) 可写成如下形式:,

38、补充:求傅立叶反变换方法,重根p1,其他单根,补充:求傅立叶反变换方法,对重根p1的系数A1k:,对单根pi的系数Ai:方法同情况1,再利用,可以求出x(t).,补充:求傅立叶反变换方法,对重根p1:,对单根pi:,Example 3,补充:求傅立叶反变换方法,Solution:,补充:求傅立叶反变换方法,补充:求傅立叶反变换方法,补充:求傅立叶反变换方法,Problems: 4.1 4.3 4.4(a) 4.8 4.14 4.21(a) (b)(g) (h) (i) 4.32(a)(b) 4.33(a) (b) 4.35 4.36,4 The continuous time Fourier transform,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报