ImageVerifierCode 换一换
格式:PPT , 页数:147 ,大小:2.10MB ,
资源ID:5434314      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5434314.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2 信号与系统 周建华 光电学院教学课件.ppt)为本站会员(myk79025)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

2 信号与系统 周建华 光电学院教学课件.ppt

1、Chapter 2 Linear Time-Invariant Systemsanalyze systems in time domain Chapter 4 The Continuous-Time Fourier Transformanalyze continuous-time systems in frequency domain Chapter 5 The Discrete-Time Fourier Transformanalyze discrete-time systems in frequency domain,Chapter 9 The Laplace Transformanaly

2、ze continuous-time systems in complex frequency domain Chapter 10 The Z-Transformanalyze discrete-time systems in complex frequency domain,2 Linear Time-Invariant Systems (LTI),Emphases in this chapter: The calculation of the convolution sum.2. The calculation of the convolution integral.3. The prop

3、erties of system represented by the unit impulse response h(t) or hn. 4. The calculation properties of,LTI,xn,yn=?,Question:,2 Linear Time-Invariant Systems (LTI),2.1 Discrete-time LTI system: The convolution sum,2 Linear Time-Invariant Systems (LTI),2.1.1 The Representation of Discrete-time Signals

4、 in Terms of Impulses,If xn=un, then,Figure 2.1,(The sifting property of n.),2 Linear Time-Invariant Systems,2 Linear Time-Invariant Systems,2.1.2 The Discrete-time Unit Impulse Response and the Convolution Sum Representation of LTI Systems,(1) Definition: Unit Impulse(Sample) Response,For a discret

5、e-time LTI system, when the input signal is n , then the output signal is called as Unit Impulse Response hn .,2 Linear Time-Invariant Systems,(2) Convolution Sum of LTI System,Solution:,Question:,n hnn-k xkn-k ,hn-k=hkn,xk hn-k=xkhkn,2 Linear Time-Invariant Systems,( Convolution Sum ),So, defining:

6、,or,2 Linear Time-Invariant Systems,(3) Calculation of Convolution Sum,e. Summing:,a. Chang variable: xnxk, hnhk,b. Time Inversal: hk h-k,c. Time Shift: In order to obtain yn, thenh-k hn-k,d. Multiplication: xkhn-k,method 1: diagram(图解法),2 Linear Time-Invariant Systems,f. Change the value of n, and

7、repeat the processes of c,d and e. to obtain yn for all n.,2 Linear Time-Invariant Systems,Example 2.1 hn,xn are illustrated in the figure.,Determine and sketch yn = xn * hn for the following xn and hn.,n,0 1 2,hn,n,0 1,xn,1,0.5,2,2 Linear Time-Invariant Systems,Solution:,k,0 1,xk,0.5,2,k,-2 -1 0,h-

8、k,1,k,(n-2) (n-1) n -1 0,hn-k,1,n0,n0,1,k,(n-2) (n-1) n -1 0,xk hn-k,2 Linear Time-Invariant Systems,0 1,xk,0.5,2,-2 -1 0,h0-k,1,k,k,n=0,-2 -1 0 1,xkh0-k,1,k,n=0,0.5,2 Linear Time-Invariant Systems,k,0 1,xk,0.5,2,k,-1 0 1,h1-k,1,For n=1,n=1,k,0 1,xkh1-k,0.5,2,2 Linear Time-Invariant Systems,k,0 1,xk

9、,0.5,2,k,0 1 2,h2-k,1,For n=2,n=2,k,0 1,xkh2-k,0.5,2,k,0 1,xk,0.5,2,k,1 2 3,h3-k,1,For n=3,n=3,k,0 1 2,xkh2-k,2,2 Linear Time-Invariant Systems,2 Linear Time-Invariant Systems,k,0 1,xk,0.5,2,k,-2 -1 0 1 n-2 n-1 n,hn-k,1,For n-21 ( n3 ),k,(n-2) (n-1) n -1 0,xk hn-k,For n-21 ( n3 ),2 Linear Time-Invar

10、iant Systems,So, yn is as the following figure:,2 Linear Time-Invariant Systems,Example 2.3,k,0 1 2,xk,1,k,-2 -1 0 1 2 ,hk,1,2 Linear Time-Invariant Systems,k,0 1 2,xk,1,k,-2 -1 0 1 ,h-k,1,Solution:,n0,n0,2 Linear Time-Invariant Systems,So,2 Linear Time-Invariant Systems,Example 2.4,k,0 1 2 3 4,xk,1

11、,k,-1 0 1 2 3 4 5 6 7,hk,2 Linear Time-Invariant Systems,k,0 1 2 3 4,xk,1,k,-6 -5 -4 -3 -2 -1 0 1,h-k,1,Solution:,n0,2 Linear Time-Invariant Systems,k,0 1 2 3 4,xk,1,k,hn-k,1,0n4,0n4,k,-6 -5 -4 -3 -2 -1 0 1 n,xkhn-k,0n4,n-6 -2 -1 0 1 n4,2 Linear Time-Invariant Systems,k,0 1 2 3 4,xk,1,k,n-6 0 1 2 3

12、4 n,hn-k,5n6,n-60,n6,k,-6 -5 -4 -3 -2 -1 0 1 2 3 4,xkhn-k,2 Linear Time-Invariant Systems,k,0 1 2 3 4,xk,1,k,n-6 4 5 6 n,hn-k,6n10,0n-64,k,-6 -5 -4 -3 -2 -1 n-6 n-5 4 5,xkhn-k,6n10,2 Linear Time-Invariant Systems,k,0 1 2 3 4,xk,1,k,hn-k,n-64,4 n-6 n-5 n,n10,n10,2 Linear Time-Invariant Systems,So,2 L

13、inear Time-Invariant Systems,Example 2.5,2 Linear Time-Invariant Systems,k,xk,1,k,h-k,n0,-5 -4 -3 -2 -1 0 1 2,-5 -4 -3 -2 -1 0 1 2,1,hn-k,n-2 n-1 n 0 1 2,k,xk hn-k,n-2 n-1 n 0 1 2,2 Linear Time-Invariant Systems,n0,2 Linear Time-Invariant Systems,k,xk,1,k,h-k,n0,-5 -4 -3 -2 -1 0 1 2,-5 -4 -3 -2 -1 0

14、 1 2,1,hn-k, -1 0 1 n,k,xk hn-k,n-2 n-1 n 0 1 2,k,2 Linear Time-Invariant Systems,n0,So,2 Linear Time-Invariant Systems,Method 2: formula(公式法),2 Linear Time-Invariant Systems,Example:,Solution:,2 Linear Time-Invariant Systems,Method 3: multiplication (竖乘法),Example 2.1,Figure 2.3,2 Linear Time-Invari

15、ant Systems,Solution:,So,2 Linear Time-Invariant Systems,说明:两个有限长序列卷积和,可以用“竖乘法”求解。如果序列xn的变量的取值为(n1,n2),序列hn的变量的取值为(m1,m2),则卷积和的结果的序列yn的变量的取值为(n1+m1,n2+m2).,2 Linear Time-Invariant Systems,Example:,Solution:,We can know:,2 Linear Time-Invariant Systems,7 2 0 -52 0 2,x,14 4 0 -10,0 0 0 0,14 4 14 -6 0

16、-10,14 4 0 -10,So,2 Linear Time-Invariant Systems,addition,Example :,Solution:,n=0,1,2,3,4,5,即,利用普通乘法即可实现两个有限长序列的卷积和,只是乘法时不要进位。,2 Linear Time-Invariant Systems,addition,Example :,Solution:,n=-3,-2,-1,0,1,2,2 Linear Time-Invariant Systems,addition,等比数列求和公式:,有限项求和:(初值-终值公比)/(1-公比) Example:,2 Linear Ti

17、me-Invariant Systems,无限项求和:1/(1-公比) 条件:公比的绝对值小于1 Example:,addition,2 Linear Time-Invariant Systems,2.2 Continuous-time LTI system: The convolution integral,2.2.1 The Representation of Continuous-time Signals in Terms of Impulses,2 Linear Time-Invariant Systems,Considering a “staircase” signal :,To a

18、pproximate a continuous-time signal x(t):,2 Linear Time-Invariant Systems,Define,We have the expression:,Therefore:,2 Linear Time-Invariant Systems,or,2 Linear Time-Invariant Systems,The sifting property of (t):,For any continuous-time signal x(t):,Especially,2 Linear Time-Invariant Systems,2.2.2 Th

19、e Continuous-time Unit impulse Response and the convolution Integral Representation of LTI Systems,(1) Definition: Unit Impulse Response,LTI,x(t)=(t),y(t)=h(t),(2) The Convolution of LTI System,LTI,x(t),y(t)=?,2 Linear Time-Invariant Systems,LTI,(t),h(t),(t),h(t),2 Linear Time-Invariant Systems,or y

20、(t) = x(t) * h(t),( Convolution Integral ),2 Linear Time-Invariant Systems,(3) Computation of Convolution Integral,a. Chang variable: x(t)x(), h(t)h(),b. Time Inversal: h() h(- ),c. Time Shift: h(-) h(t- ),d. Multiplication: x()h(t- ),e. Integrating:,Method 1: diagram(图解法),2 Linear Time-Invariant Sy

21、stems,e. Integrating:,积分上下限的确定说明: 积分下限:为两相乘函数的左限的最大值。 积分上限:为两相乘函数的右限的最小值。,2 Linear Time-Invariant Systems,Example 2.6,Determine and sketch y(t)= x(t) * h(t) for the following x(t) and y(t).,h(t) ,x(t) are illustrated in the figure.,0,t,h(t),0,t,x(t),1,1,2 Linear Time-Invariant Systems,0,h(-),0,x(),1

22、,1,Solution:,0,h(t-),1,t,t0,t0,2 Linear Time-Invariant Systems,0,x(),1,Solution:,0,h(t-),1,t,t0,t0,0,x() h(t-),1,t,2 Linear Time-Invariant Systems,Example 2.7,x(),0 T,0 2T,-2T 0,h(),h(-),2 Linear Time-Invariant Systems,Solution:,x(),0 T,-2T+t t 0,h(t-),t0,t0,2 Linear Time-Invariant Systems,x(),0 T,-

23、2T+t 0 t T,h(t-),0tT,-2T+t 0 t T,x() h(t-),0tT,2 Linear Time-Invariant Systems,x(),0 T 2T,-2T+t 0 T t 2T,h(t-),Tt2T,-2T+t 0 T t 2T,x() h(t-),Tt2T,x(),0 T 2T 3T,0 -2T+t T 2T t 3T,h(t-),2Tt3T,x() h(t-),2 Linear Time-Invariant Systems,0 -2T+t T 2T t 3T,2Tt3T,x(),0 T 2T 3T,0 T -2T+t 2T 3T t,h(t-),t3T,t3

24、T,2 Linear Time-Invariant Systems,2 Linear Time-Invariant Systems,Example 2.8,x(),h(),3,0,0,h(-),-3,0,1,1,1,2 Linear Time-Invariant Systems,x(),0,Solution:,h(t-),-3,0,t0,t-3,t0,x() h(t-),0,t-3,2 Linear Time-Invariant Systems,x(),0,h(t-),-3,0,t-3,0t3,x() h(t-),-3 t-3 0,0t3,2 Linear Time-Invariant Sys

25、tems,x(),0,h(t-),-3,0,t-3,t3,x() h(t-),t3,0,2 Linear Time-Invariant Systems,Method 2: formula(公式法),2 Linear Time-Invariant Systems,Example 2.8,Solution:,2 Linear Time-Invariant Systems,2 Linear Time-Invariant Systems,Example:,Solution:,2 Linear Time-Invariant Systems,常用公式:,2 Linear Time-Invariant Sy

26、stems,Problems : 2.1 2.3 2.4 2.5 2.10 2.11,2 Linear Time-Invariant Systems,2.3 Properties of Linear Time-Invariant System,Convolution formula:,2 Linear Time-Invariant Systems,The characteristics of an LTI system arecompletely determined by its impulse response.,2 Linear Time-Invariant Systems,2.3.1

27、The Commutative Property (交换性),Discrete time: xn*hn=hn*xnContinuous time: x(t)*h(t)=h(t)*x(t),h(t),x(t),y(t)=x(t)*h(t),x(t),h(t),y(t)=h(t)*x(t),2 Linear Time-Invariant Systems,Prove :,2 Linear Time-Invariant Systems,Prove :,2 Linear Time-Invariant Systems,2.3.2 The Distributive Property(分配性),Discret

28、e time: xn*h1n+h2n=xn*h1n+xn*h2nContinuous time: x(t)*h1(t)+h2(t)=x(t)*h1(t)+x(t)*h2(t),2 Linear Time-Invariant Systems,2 Linear Time-Invariant Systems,Example 2.10,2 Linear Time-Invariant Systems,Solution:,2 Linear Time-Invariant Systems,Figure 2.24,2 Linear Time-Invariant Systems,2.3.3 The Associa

29、tive Property(结合性),Discrete time: xn*h1n*h2n=xn*h1n*h2nContinuous time: x(t)*h1(t)*h2(t)=x(t)*h1(t)*h2(t),2 Linear Time-Invariant Systems,2 Linear Time-Invariant Systems,补充,卷积的其它性质:,首先定义:,2 Linear Time-Invariant Systems,补充,微分性质:,积分性质:,时延性质:,2 Linear Time-Invariant Systems,补充,时延性质:,2 Linear Time-Inva

30、riant Systems,补充,Example:,Solution:,2 Linear Time-Invariant Systems,补充,2 Linear Time-Invariant Systems,1) the properties of (t) and n:,2.3.4 LTI system with and without Memory,2 Linear Time-Invariant Systems,Prove:,2 Linear Time-Invariant Systems,2) Memoryless system:Discrete time: yn=kxn, Continuou

31、s time: y(t)=kx(t),k (t),x(t),y(t)=kx(t)=x(t)*k(t),k n,xn,yn=kxn=xn*kn,2 Linear Time-Invariant Systems,2 Linear Time-Invariant Systems,Example:,2 Linear Time-Invariant Systems,0 1 2 3 t,Solution:,2 Linear Time-Invariant Systems,Example:,x(t) is shown as following figure:,2 Linear Time-Invariant Syst

32、ems,Solution:,If T2,then,2 Linear Time-Invariant Systems,If T2,then,2 Linear Time-Invariant Systems,补充,Examples: Compute,(1),2 Linear Time-Invariant Systems,补充,Solution: (1),2 Linear Time-Invariant Systems,补充,Examples: Compute,(2),2 Linear Time-Invariant Systems,补充,Solution: (2),Why?,because,对f1(t)积

33、分时,不能恢复原信号f1(t).,成立的条件是:,2 Linear Time-Invariant Systems,补充,We can do so:,2 Linear Time-Invariant Systems,2.3.5 Invertibility of LTI system,Original system: h(t) Reverse system: h1(t),So, for the invertible system:,h(t)*h1(t)=(t),hn*h1n=n,2 Linear Time-Invariant Systems,Example 2.11 2.12,Determine t

34、he inverse system of the following system.,2 Linear Time-Invariant Systems,(a) Solution:,(b) Solution:,2 Linear Time-Invariant Systems,2 Linear Time-Invariant Systems,2.3.6 Causality for LTI system,Causal discrete-time system satisfy the condition:hn=0 for n0 Causal continuous-time system satisfy th

35、e condition:h(t)=0 for t0,2 Linear Time-Invariant Systems,For a causal discrete-time LTI system,For a causal continuous-time LTI system,2 Linear Time-Invariant Systems,Only for linear systems, causality for systems is equivalent to the condition of initial rest;,Definition: the condition of initial

36、rest: Causal continuous-time system: if the input to a causal system x(t)=0 for tt0,then the output y(t)=0 for tt0.Causal discrete-time system: if the input to a causal system xn=0 for nn0,then the output yn=0 for nn0.,2 Linear Time-Invariant Systems,Definition: Causal signal: if xn is zero for n0 ,

37、or x(t) is zero for t0, then xn or x(t) is causal signal.,So, causality of an LTI system is equivalent to its impulse response( hn or h(t) ) being a causal signal.,2 Linear Time-Invariant Systems,2.3.7 Stability for LTI system,Definition of stability:Every bounded input produces a bounded output.,Th

38、e stability of a discrete-time system is equivalent to:,The stability of a continuous-time system is equivalent to:,2 Linear Time-Invariant Systems,So,the condition for |yn|A is,To prove :,If |xn|B,2 Linear Time-Invariant Systems,Continuous-time system:,If |x(t)|B,So,the condition for |y(t)|A is,2 L

39、inear Time-Invariant Systems,Example 2.13 Determine whether or not the following systems are stable.,(a) time-shift discrete-time system,(b) time-shift continuous-time system,(c) The accumulator,(d) The integrator,stable,stable,unstable,unstable,2 Linear Time-Invariant Systems,2.3.8 The Unit Step Re

40、sponse of LTI system,Discrete-time system:,hn,n,hn,un,sn=un*hn,The relationship between hn and sn:,The unit step response: sn,2 Linear Time-Invariant Systems,Continuous-time system:,h(t),(t),h(t),u(t),s(t)=u(t)*h(t),The relationship between h(t) and s(t):,The unit step response: s(t),2 Linear Time-I

41、nvariant Systems,2.4 Causal LTI Systems Described by Differential and Difference Equation,Discrete-time system: Difference Equation Continuous-time system: Differential Equation,2 Linear Time-Invariant Systems,2.4.1 Linear Constant-Coefficient Differential Equation,A .general Nth-order linear consta

42、nt-coefficient differential equation:,or,and initial condition:y(t0), y(t0), , y(N-1)(t0) ( N values ),2 Linear Time-Invariant Systems,the causal LTI systems satisfy the conditionof initial rest: if x(t)=0 for tt0, theny(t)=0 for tt0,y(t0) = y(t0) = = y(N-1)(t0) =0,2 Linear Time-Invariant Systems,Th

43、e complete solution of differential equation:,(1),A homogeneous solution of the homogeneous differential equation: ( natural response),2 Linear Time-Invariant Systems,The complete solution of differential equation:,(2),Zero-state response(零状态响应):Initial states are zero,and the response is produced b

44、y input signal x(t).,Zero-input response(零输入响应): The input signal x(t) is zero, and the response is produced by systems initial states y(t0),y(t0),2 Linear Time-Invariant Systems,2.4.2 Linear Constant-Coefficient Difference Equation,A. general Nth-order linear constant-coefficient difference equation:,or,and initial condition:y0, y-1, , y-(N-1) ( N values ),2 Linear Time-Invariant Systems,The complete solution of difference equation:,(1),Particular solution for a certain input.,( forced response),A homogeneous solution of the homogeneous difference equation: ( natural response),

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报