ImageVerifierCode 换一换
格式:PPT , 页数:88 ,大小:971KB ,
资源ID:5434290      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5434290.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(10(1) 信号与系统 周建华 光电学院教学课件.ppt)为本站会员(kpmy5893)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

10(1) 信号与系统 周建华 光电学院教学课件.ppt

1、,10.1 The z-Transform,10. The z-Transform,10.1 The z-Transform,LTI,(1) Definition,10.1 The z-Transform,10.1 The z-Transform,10.1 The z-Transform,a. Especially, when z=ej, above equation becomes The Fourier transform of signal xn:,So, the relationship between the Fourier transformand the z-transform

2、is:,(2) The relationship between Z-transform and the Fourier transform of xn,b. On the other hand,10.1 The z-Transform,(2) Region of Convergence ( ROC ),ROC: Range of z for X(z) to converge Representation: A. InequalityB. Region in z-plane,10.1 The z-Transform,Example 10.1 Determine the z-Transform

3、of xn and its ROC.,10.1 The z-Transform,Solution:,10.1 The z-Transform,Example 10.2 Determine the z-Transform of xn and its ROC.,10.1 The z-Transform,Solution:,10.1 The z-Transform,Figure 10.3,10.1 The z-Transform,and,have same Z- transform representation, buttheir ROC is different.,Z,Z,Note: for a

4、signal xn, we must give out thez-transform with its ROC.,10.1 The z-Transform,(3) The pole-zero plot of X(z),X(z) can be represented the ratio of two polynomials, the numerator polynomial;,the denominator polynomial;,10.1 The z-Transform,Definition: The zeros of X(z): the roots of the numerator poly

5、nomial N(z) is called the zeros of X(z).,The poles of X(z): the roots of the denominator polynomial D(z) is called the poles of X(z).,10.1 The z-Transform,The representation of X(z) through its poles and zeros in the z-plane is referred to the pole-zeroplot of X(z).,Definition:,In the z-plane, use “

6、X” to indicate the poles of X(z); and use “O” to indicate the zeros of X(z);,On the other hand,If MN, z, X(z) , X(z) have (M-N) poles at infinity.If MN, z, X(z) 0, X(z) have (N-M) zeros at infinity.,10.1 The z-Transform,Example 10.1 Determine X(z) , its ROC and its pole-zero plot.,10.1 The z-Transfo

7、rm,Figure 10.2,Example,10.1 The z-Transform,Example 10.3 Determine the z-Transform of xn , its ROC and its pole-zero plot.,10.1 The z-Transform,Figure 10.4,10.1 The z-Transform,Example 10.4 Determine the z-Transform of xn , its ROC and its pole-zero plot.,Fugure 10.5,10.2 The Region of Convergence f

8、or the z-Transform,Property 1: The ROC of X(z) consists of a ring inthe z-plane centered the origin.,10.2 The ROC of the z-Transform,10.2 The ROC of the z-Transform,Property 2: the ROC does not contain any poles.Property 3: If xn is of finite duration, then the ROC is the entire z- plane, except pos

9、sibly z=0 and z=,Example:,Solution:,10.2 The ROC of the z-Transform,Example 10.5,10.2 The ROC of the z-Transform,Property 4: If xn is right-side sequence , and ifthe circle |z|=r0 is in the ROC, then allvalues of z for which |z|r0 will also in the ROC.,10.2 The ROC of the z-Transform,Figure 10.7 rig

10、ht-sided sequence xn.,10.2 The ROC of the z-Transform,a,ROC of a right-sided sequence:,Property 5: If xn is left-sided sequence, and if thecircle |z|=r0 is in the ROC, then all values of z for which 0|z|r0 will also be in the ROC.,10.2 The ROC of the z-Transform,10.2 The ROC of the z-Transform,ROC o

11、f left-sided sequence:,Property 6: If xn is two sided, and if the circle |z|=r0 is in the ROC, then the ROC will consist of a ring in the z-plane thatincludes the circle |z|=r0 .,10.2 The ROC of the z-Transform,10.2 The ROC of the z-Transform,ROC of two-sided sequence:,Example 10.6 Determine the z-t

12、ransform of the following signals.,10.2 The ROC of the z-Transform,10.2 The ROC of the z-Transform,Solution:,Zeros of X(z):,N-1 poles of X(z):,pole of X(z):,10.2 The ROC of the z-Transform,Figure 10-9,Example 10.7 Determine the z-transform of the following signals.,10.2 The ROC of the z-Transform,10

13、.2 The ROC of the z-Transform,Property 7: If the z-transform X(z) of xn is rational, then its ROC is bounded by poles or extends to infinity.,10.2 The ROC of the z-Transform,Property 8: If the z-transform X(z) of xn is rational, and if xn is right sided, then the ROCis the region in the z-plane outs

14、ide theoutmost pole i.e., outside the circle of radius equal to the largest magnitude of the poles of X(z), Furthermore, if xn is causal (i.e., if it is right sided and equal to0 for n0) , then the ROC also includes z=.,10.2 The ROC of the z-Transform,Property 9: If the z-transform X(z) of xn is rat

15、ional, and if xn is left sided, then the ROC isthe region in the z-plane inside the innermost pole i.e., inside the circle of radius equal to the smallest magnitude of the poles of X(z) other than any at z=0 and extending inward to an possibly including z=0. in particular, if xn is anticausal (i.e.,

16、 if it is right sided and equal to 0 for n0) , then the ROC also includes z=0.,10.2 The ROC of the z-Transform,Example 10.8,Consider all of the possible ROCS of X(z).,Figure 10.12,10.2 The ROC of the z-Transform,10.3 The Inverse z-Transform,10.3 The inverse z-Transform,Show:,10.3 The inverse z-Trans

17、form,The calculation for inverse z-transform X(z): (1) Integration of complex function by equation.,(2) using fraction expansion ,10.3 The inverse z-Transform,(3),Long division (Taylors series)长除法(泰勒级数展开法),Appendix Partial Fraction Expansion,Consider a fraction polynomial:,10.3 The inverse z-Transfo

18、rm,即,X(z)是z的有理分式。,把X(z)表示成z-1的两个多项式之比形式。,10.3 The inverse z-Transform,Discuss two cases of D(z-1)=0, for distinct roots,and same roots.,我们这里对X(z) 以z-1进行部分分式展开。,10.3 The inverse z-Transform,Case 1: Distinct roots:,thus,10.3 The inverse z-Transform,Calculate A1 :,Generally,10.3 The inverse z-Transform

19、,Using the following relationships to obtain xn.,10.3 The inverse z-Transform,10.3 The inverse z-Transform,Example : Compute the inverse z-transform of X(z).,Solution:,10.3 The inverse z-Transform,10.3 The inverse z-Transform,Case 2: Same root:,So,10.3 The inverse z-Transform,For first order poles:,

20、10.3 The inverse z-Transform,Multiply two sides by (1-p1z-1)r :,For r-order poles:,10.3 The inverse z-Transform,So,10.3 The inverse z-Transform,10.3 The inverse z-Transform,using,We can obtain xn.,10.3 The inverse z-Transform,Or using,We can obtain xn.,10.3 The inverse z-Transform,10.3 The inverse z

21、-Transform,Example: Determine the inverse z-transform.,Solution:,10.3 The inverse z-Transform,10.3 The inverse z-Transform,10.3 The inverse z-Transform,Example 10.9 10.10 10.11 Determine the inverse z-transform of X(z).,10.3 The inverse z-Transform,(3).,10.3 The inverse z-Transform,If X(z) is not ra

22、tional , compute xn by the following relationships,Long division (Taylors series)长除法(泰勒级数展开法),(a),(b),Example 10.12 10.14 Determine the inverse z-transform of X(z).,10.3 The inverse z-Transform,(a),(b),Example 10.13 Determine the inverse z-transform of X(z) by long division.,10.3 The inverse z-Trans

23、form,(a),10.3 The inverse z-Transform,Solution:,(b),10.3 The inverse z-Transform,Solution:,10.5 Properties of the z-Transform,(1) Linearity,10.5 properties of the z-Transform,10.5 properties of the z-Transform,线性性质:线性组合后的收敛域R是线性组合前两个信号的收敛域R1与R2的公共区域.如果在线性组合过程中出现零点与极点相抵消的情况,则收敛域可能会扩大.,10.5 properties

24、 of the z-Transform,Example:,(2) Time shifting,10.5 properties of the z-Transform,10.5 properties of the z-Transform,(3) Scaling in the z-domain,可见: z平面上的尺度展缩,等效于xn乘以指数序列。 当z0为复指数时, z平面上的尺度展缩对应于Z平面上的点沿角度方向进行旋转,沿径向方向伸张或压缩。,(4) Time Reversal,10.5 properties of the z-Transform,(5) Time expansion,10.5 p

25、roperties of the z-Transform,(6) Conjugation,(7) Convolution property,10.5 properties of the z-Transform,Example 10.15 10.16,10.5 properties of the z-Transform,(8) Differentiation in the z-domain,10.5 properties of the z-Transform,Example 10.17 10.18 Find the inverse z- transform of X(z).,(a),(b),10

26、.5 properties of the z-Transform,(9) The initial-value theorem,If xn=0 for n0, then,Table 10.1 properties of z - transform,10.5 properties of the z-Transform,10.6 Some common z-Transform Pairs,Table 10.2,10.6 some common z-transform pairs,Example : Show the following z-transform pairs.,10.6 some com

27、mon z-transform pairs,10.6 some common z-transform pairs,Show:,利用z域微分性质,利用时移性质,10.6 some common z-transform pairs,10.6 some common z-transform pairs,再次利用z域微分性质,10.6 some common z-transform pairs,再利用时移性质,10.6 some common z-transform pairs,继续使用z域微分性质和时移性质,可以得到以下一般的变换关系:,利用这些变换关系,可以对多重极点的X(z)求z的 逆变换。,10.6 some common z-transform pairs,同样,可以得到以下z变换对。,Homework: 10.2 10.3 10.6 10.7 10.9 10.10 10.11 10.12 10.13 10.16 10.17 10.18 10.24 10.31 10.47,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报