ImageVerifierCode 换一换
格式:PPT , 页数:23 ,大小:135.50KB ,
资源ID:5377535      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.docduoduo.com/d-5377535.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第十章 时间序列分析(计量经济学,南开大学).ppt)为本站会员(gnk289057)主动上传,道客多多仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知道客多多(发送邮件至docduoduo@163.com或直接QQ联系客服),我们立即给予删除!

第十章 时间序列分析(计量经济学,南开大学).ppt

1、我们对经济量进行分析的最终目的,是为了预测某些经济变量的未来值。进行预测的方法有两种。一种是根据一定的经济理论,建立各种相互影响的经济变量之间的关系模型,根据观测到的经济数据估计出模型参数,利用模型来预测有关变量的未来值。这种方法的优点在于精确地考虑到了各经济变量之间的相互影响,有理论依据,但是由于抽样信息不完备,经济模型和经济计量模型不可能真正准确地反映了经济现实,因而得到的结果不可能是相当准确。另一种方法是利用要预测的经济变量的过去值来预测其未来值,而不考虑变量值产生的经济背景。这种方法假定数据是由随机过程产生的,根据单一变量的观测值建立时间序列模型进行预测。这种方法在短期预测方面是很成功

2、的。,第十章 时间序列分析,第一节 确定性时间序列模型一、移动平均模型,二、加权移动平均模型,三、二次移动平均模型对经过一次移动平均产生的序列才进行移动平均,即:,四、指数平滑模型如果采用下式求得序列的平滑预测值:,五、二次指数平滑模型在一次指数平滑模型的基础上再进行指数平滑计算,即构成二次指数平滑模型。同样可以构成三次指数平滑模型。,第二节 随机时间序列模型的特征一、随机过程(stochastic process)一个特定的变量在不同的时点或时期的观测值y1,y2,yT,称为一个时间序列。假设这些观测值是随机变量Y1, Y2, , YT的实现,而随机变量Y1, Y2, , YT是无穷随机变量

3、序列Yt0, Yt0+1, , Y1, Y2, 的一部分(其中t0可以是-)。这个无穷随机变量序列Yt,t=1,2,称为一个随机过程。一个具有均值为零和相同有限方差的的独立随机变量序列et称为白噪声(white noise)。如果et服从正态分布,则称为高斯白噪声。 例如,一个一阶自回归过程: ,,假定改随机过程的起点为 t0= - ,可以证明E(Yt)=0, var(Yt)=y。这里每个随机变量的曲志都依赖于其前期水平,这是依据现在和过去的观测值预测未来值的基础。因此,度量时间序列元素之间的依赖性的协方差在序列特性描述方面非常重要。,二、自协方差函数和自相关函数自协方差函数是描述时间序列随机

4、型结构的重要工具。,由于只有随机过程的样本,只能根据样本数据计算出样本自相关函数(Sample autocorrelation function) :,三、平稳随机过程并非所有随机过程的两个元素之间的协方差都只依赖于它们的时间间隔。我们把任意两个元素之间的协方差都只依赖于它们的时间间隔,且具有常数均值和有限方差的随机过程,称为平稳过程(stationary process):,如果随机过程不满足上述条件,则称为非平稳随机过程。平稳随机过程产生的时间序列,为平稳序列。平稳性是时间序列的一个重要的特性,它保证了随机过程基本上没有结构变动,而结构变动会给预测带来困难,甚至不可预测。,四、平稳性的检验

5、1、博克斯-皮尔斯(Box-Pierce)Q统计量 平稳过程的一个显著特征是自相关函数随时间间隔k的增大而衰减,因此,对时间序列的样本自相关函数是否显著地不为零,来检验序列的平稳性。,2、单位根检验(Unit root test) 考虑以阶自回归模型:,一、滞后算子定义滞后算子(lag operator)L:LYt = Yt-1 其中Yt 和 Yt-1为随机过程中的元素,而L2Yt = LL(Yt)= LYt-1= Yt-2 一般地,对任意正整数n,有LnYt = Yt-n, L0Yt = Yt,第四节 AR、MA、ARMA模型,二、自回归模型(auto-regressive,AR)1、AR模

6、型如果时间序列y1,y2,yT,的生成过程的形式为:,2、AR模型的自协方差函数和自相关函数,3、AR模型的平稳性,二、移动平均模型(Moving Average, MA) 1、 MA(q)模型如果时间序列yt为它的当期和前期的误差和随机项的线性函数,即,2、MA模型的自协方差函数和自相关函数,三、自回归移动平均模型(ARMA)如果时间序列yt为它的当期和前期的误差和随机项,以及其前期值的线性函数,即,四、AR 模型的估计 1、已知阶数p的AR(p)模型的估计如果样本为AR过程生成:,把观测值写成矩阵形式:,2、AR(p)模型的阶数p的确定对于给定的一组时间序列数据,识别AR过程阶数的一种方法

7、,是估计递增阶k,并检验k阶AR过程中第k个系数k的显著性。这个系数称为第k个偏自相关系数(partial autocorrelation coefficient),记为kk。偏自项关系数计量了不能由AR(k-1)解释的yt和yt-k之间的相关程度。偏自相关序列kk(k=1,2,)称为偏自相关函数(partial auto-correlation function)。,五、MA 模型的估计 1、阶的确定MA过程的自相关函数为:,2、参数估计可采用最大似然法估计参数。若MA(q)的样本均值为零,et服从正态分布,则可构造似然函数:,六、ARIMA 模型 1、ARMA与ARIMAARMA(p,q)

8、的阶的确定,仍可使用自相关和偏自相关函数。如果自相关函数小时很慢,则该过程可能是不平稳的。对yt进行差分,如果差分后的序列是平稳的,则称yt为自回归单整移动平均过程(autoregressive integrated moving-average process),用ARMA(p,1,q)表示。如果yt须经过d次差分后转变为平稳过程,则称ARIMA(p,d,q)。在确定p,d,q后,即可对模型进行估计。 2、博克斯-詹金斯方法(Box-Jenkins Approach)时间序列的博克斯-詹金斯方法是对于给定的彝族数据,寻求一个可适当表示数据生成过程的ARIMA模型的一种方法。该方法分三个阶段:

9、识别、估计和诊断校验。 (1)识别。在估计自相关和偏自相关的基础上,对数据设定一个试验性的ARIMA模型。如果自相关函数衰减慢或不消失,说明序列非平稳,需要进行差分,直至得到一个平稳序列。,对于MA(q)过程,可用样本的自相关函数找到截止点,确定阶数q。对于AR(p)过程,利用偏自相关函数确定截止点k和阶数p。如果自相关和偏自相关都没有截止点,则可考虑ARMA模型,并设法确定模型的阶数。,(2)估计。在确定模型及阶数的基础上,进行参数估计。(3)诊断校验。主要方法有:i)进行残差分析,检验残差是否为白噪声。可利用残差的散点图,以及估计残差自相关进行检验。检验残差的自相关可使用Q统计量进行:,ii)过度拟合已设定的模型。如果以识别和估计ARMA(p,q),则再估计ARMA(p+1,q)和ARMA(p,q+1),并检验而外参数的显著性。,

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报